Natural smolt production of Icelandic salmon rivers

ICES working paper

Gudjonsson, S., S. M. Einarsson, M. Johannsson and A. Isaksson 1988.

Institute of Freshwater Fisheries Iceland VMSTR/88013

Eintak bókasafns

VMST-2/88013

Natural smolt production of Icelandic salmon rivers

ICES working paper

Gudjonsson, S., S. M. Einarsson, M. Johannsson and A. Isaksson 1988.

Institute of Freshwater Fisheries Iceland VMSTR/88013

VEIÐIMÁLASTOFNUN Bókasafn

Introduction

It is important to know the number of wild smolts entering the sea each year in Iceland for a number of managemental reasons. The size of the annual salmon catch depends on the number of outmigrating smolts one or two years earlier and the survival of these smolts at sea. There are two possible ways to calculate the number of smolts.

One method is to measure or estimate the production of smolts in the rivers. The production of smolts in a river system depends on the size and quality of accessible salmon rearing habitat. The quantity and the quality of salmon rearing habitat in Iceland has not been thoroughly mapped. Furthermore, utilization of the habitat from year to year varies, since age at smoltification can change from time to time and yearclasses of juveniles are of different size, depending on climatic condition and the size of spawning stock. Counting of smolts leaving a river has only been done for few rivers. Therefore, such an analysis is not feasible.

The other way is to use known exploitation rates to calculate the total run of adults returning to the river and then to use known return rate of tagged wild smolts to backcalculate the number of smolts leaving the stream. Since, exploitation rate and return rate is known for some salmon stocks in Iceland, this is possible. Ocean fishery of salmon is banned within Icelandic 200 miles fishing limits. Fishing mortality at sea is therefore most likely neglible.

This paper is an attempt to calculate the average number of salmon smolts leaving Icelandic rivers each spring using the latter method.

Biological parameters

Salmon catch

Catch records are very accurate for most Icelandic rivers.

The average catch for 20 year interval was calculated for all rivers in South and Western Iceland and North and Eastern

Iceland, respectively. Standard deviation as well as 95 % confidence interval were also calculated (Table 1).

Exploitation rate

Based on known exploitation rates for some Icelandic rivers for a number of years (Þór Gudjónsson 1987, Sigurdur Gudjonsson 1988, Tumi Tomasson 1988) 50 % average exploitation rate is assumed.

Return rate

Return rate of tagged wild smolt is known for one river in Iceland, River Elliodaar. For the 1975 smolt-migration the return rate of tagged smolt was approximately 20 % (Isaksson et al. 1978) and for the 1985 smolt-migration it was approximately 10 % (Jon Kristjansson 1987). Handling and tagging reduces survival somewhat so higher returns can be expected.

Ocean conditions

The ocean conditions are similar along the south and the west coasts of Iceland but are fluctuating from year to year along the north and the east coasts (Asthorsson et al. 1982). The time imediately after the smolts migrate to sea is most critical and survival rate depends on the conditions at that time (Hartt 1980, Scarnecchia 1984). The survival of smolts at sea is thus likely to be more fluctuating in northern and eastern salmon stocks. Return rates in ocean ranching experiments in north Iceland have in general been lower than in west Iceland. The smolt production of northern and eastern rivers is also observed to fluctuate more than in southern and western rivers as seen from electro-fishing surveys for juveniles.

Grilse-salmon ratio

Higher proportion of the run in the north and the east is salmon, whereas grilse are more common in the south and the west. The overall return rate in the north and the east is thus lower because of mortality during the second year at sea. Only known ocean fishing mortality occurs at that stage although on a neglible scale.

Assumed survival

Since survival at sea fluctuates, returns based on 10 %, 15 % and 20 % survival were calculated for both areas. However, due to the above reasons, 20 % return rates were assumed for salmon stocks from rivers in south and west Iceland, but a lower return rate, of 15 %, was assumed for northern and eastern rivers (Table 2).

Conclusions

Based on these assumptions, the average annual number of wild smolts from Icelandic rivers is approximately 580.000. Thereof approximately 375.000 smolts ($\frac{1}{2}$ 10 %) are from southern and western rivers and approximately 208.000 smolts ($\frac{1}{2}$ 20 %) from northern and eastern rivers (Table 2).

Modelling

A model to stimulate ideas to scientifically based approaches to management was proposed at the meeting of the study group on the Norwegian Sea and Faroese salmon fishery held in Dublin, 9-11 February 1988.

The parameters in that model for Iceland are:

P in year N, smolt production is 580.000

X, catch at high seas is close to 0

Loss to home water catch 1,6 times X is close to 0

Nominal home water catch, Y is approximately 50.000

Non-catch fishing mortality is assumed to be close to 0

Spawning escapement, W is approximately 50.000

These numbers are average annual numbers for wild smolts only.

Table 1

Total salmon catch in Icelandic rivers 1966 to 1985.

Year South	and West	North and East
Tear South		
	Iceland	Iceland
1966	23489	5255
1967	33955	6548
1968	32482	7780
1969	27322	7142
1970	39641	11533
1971	48693	13261
1972	47258	16479
1973	46934	16272
1974	36948	15200
1975	48543	17741
1976	40586	19047
1977	40108	24467
1978	52955	27623
1979	43674	20554
1980	35494	16643
1981	30861	12899
1982	27034	9818
1983	37016	10059
1984	26878	8106
1985	30577	10954
	, ,	10301
Mean Std	37522 8324	13869 5914
Std as % of mean	22.2	42.6
95% confid. interval	33762-41282	11101-16637

Table 2

a) Calculated number of smolt from Icelandic rivers based on 50 % exploitation rate in the rivers and 20 % return rate from sea.

Sout	th and	West	Iceland	North	and	East	Iceland
Mean	ı		375.220	Mean			138.690
Min			337.620	Min			111.010
Max			412.820	Max			166.370

b) Calculated number of smolt from Icelandic rivers based on 50 % exploitation rate in the rivers and 15 % return rate from sea.

South and Wes	t Iceland	North and	East Iceland
Mean	562.830	Mean	208.035
Min	506.430	Min	166.515
Max	619.230	Max	249.555

c) Calculated number of smolt from Icelandic rivers based on 50 % exploitation rate in the rivers and 10 % return rate from sea.

South	and	West	Iceland	North	and	East	Iceland
Mean Min Max			750.440 675.240 825.640	Mean Min Max			277.380 222.020 332.740

Min. and max. values were calculated from 95 % confidence intervals of catches.

Underlined numbers were used to calculate the smolt production of the country.

References

- Astthorsson, O. S., I. Hallgrimsson and G. S. Jonsson 1983. Variations in zooplankton densities in Icelandic waters in spring during 1961-1982. Rit Fiskideildar 7, no 2.
- Hartt, A. C. 1980. Juvenile salmonids in the oceanic ecosystem. The critical first summer. p 25-57. In W. J. McNeil and D. C. Hinsworth (eds.) Salmonid ecosystems of the north Pacific. Oregon State University Press, Corvallis, U.S.A.
- Isaksson, A., T. J. Rasch and P. H. Poe 1978. An evaluation of smolt release into a salmon and non-salmon producing stream using two realeasing methods. Journal of Agricultural Research in Iceland 10:100-113.
- Kristjansson, J. 1987. Rannsoknir a gonguseidum i Ellidaam 1985. Institute of freshwater fisheries Iceland. Report VMSTR/87003.
- Gudjonsson, S. 1988. Fiskrannsoknir i Blondu 1987. Gongufiskur. Institute of freshwater fisheries Iceland. Report VMSTR/88011.
- Gudjonsson Th. 1987. Exploitation of Atlantic salmon in Iceland. Paper presented at the third international Atlantic salmon symposium held in Biarritz October 1986. In press.
- Scarnecchia, D. 1984. Climatic and oceanic variations affecting yield of Icelandic stocks of Atlantic salmon. Can. J. Fish. Aquat. Sci. 41:917-935.
- Tomasson T. 1988. Midfjardara 1987. Institute of freshwater fisheries Iceland. Report VMSTN/88003.