lobstermen (S. boat making it buth. The whale aine on August mid-September langled on lines October 16–17 off their normal apparently mis-

Massachusetts, par (J. Prescott,

at Dipper Har-

Analysis of calls of killer whales, Orcinus orca, from Iceland and Norway

Sue E. Moore^{1,2}, Jon K. Francine¹, Ann E. Bowles¹ and John K. B. Ford³

- ¹ Sea World Research Institute, Hubbs Marine Research Center, 1700 S. Shore, Rd., San Diego, CA 92109 USA
- ² Present address: SEACO/SAIC 2845-D Nimitz Blvd., San Diego, CA. 92106 USA
- ³ Vancouver Aquarium, P.B. Box 3232, Vancouver, B. C., Canada V6B 3X8

ABSTRACT

Underwater recordings of killer whale calls were made off Norway and Iceland from 1983 through 1986 in association with efforts to photograph dorsal fins and saddles for identification of individual whales. Researchers collected eight hours of recordings near at least two pods off Norway and eight hours of recordings near at least five pods off Iceland. A preliminary description of discrete call types for whales from each area was completed using methods developed on well known pods of killer whales off British Columbia and Washington. Twenty-four discrete calls were described for whales off Iceland; 23 discrete call types were identified for whales off Norway. There was little evidence of calls shared between Icelandic and Norwegian pods.

INTRODUCTION

Effective management of cetaceans requires specific information about abundance, movements and reproductive isolation of subpopulations ("stocks") of the species. Some relatively new techniques applied to the management of killer whales (Orcinus orca) involve analysis of geographic variation in colouration and vocalizations, identifying stereotypic, pod-specific calls and photoidentifying individuals. Killer whales of the world have been provisionally divided into five distinct stocks based on geographic variation in colour patterns (Evans et al. 1982). Two distinct races of killer whales in the Antarctic have been recognized, based on differences in osteology and size (Berzin and Vladimirov 1983). Variations in colour patterns have been related directly to genetic differences in some other cetaceans, such as Stenella spp. (Perrin et al. 1987). In addition, differences in the calls recorded from killer whales in the Northern and Southern Hemispheres have been recognized (Jehl et al. 1980; Awbrey et al. 1982), although this topic has been little explored. The pulsed calls recorded from Antarctic killer whales were similar in gross structure to those recorded from killer whales in the Northern Hemisphere, but were of a higher frequency (Awbrey et al. 1982). Also, subunits of some Antarctic calls ("components") were produced in a fixed order that differed from that of calls in the Pacific Northwest (Awbrey, pers. comm.).

Comprehensive photoidentification studies of wild populations of killer whales have been conducted off British Columbia and Washington since 1973 and 1976, respectively (Bigg 1982; Balcomb *et al.* 1982). These studies have relied on high-resolution photographs of dorsal fins and post-dorsal-fin "saddles" to identify individual whales. Nearly all killer whales in the British Columbia study area are thought to have been iden-

tified in this manner, so the social structure and natural history of this population is relatively well known. A five-year bioacoustic study carried out in association with the photoidentification efforts culminated in the description of pod-specific dialects for these British Columbia whales (Ford 1984; Ford and Fisher 1982, 1983). Although each pod produced a repertoire of 7 to 17 readily identifiable calls, some pods shared some call types. Call sub-categories (hereafter called subtypes) were produced by particular pods, and were identified as such because they were themselves relatively invariant and were similar in the organization of components and tonal quality to calls given by other pods. Pods that shared some calls composed a "clan" (Ford 1984). Sixteen resident pods off the coast of British Columbia were separated into four such clans, each with a unique set of discrete calls. It is not yet clear whether there is genetic flow among these clans (Ford 1984). Local variants of call traditions (hereafter called "dialects") may be a genetic isolating mechanism in other species, notably birds (Baker 1982).

Similar photoidentification studies were begun off Argentina in 1975 (Lopez and Lopez 1985) and off south Alaska in 1976 (Leatherwood *et al.* 1984, 1986; Ellis *et al.* in press). These studies are not yet as comprehensive as those conducted in the Pacific Northwest, however, so that social structure and call repertoires for the population are poorly known.

In 1981 the Scientific Committee of the International Whaling Commission (IWC) convened a workshop on the identity and natural history of killer whale populations worldwide. The workshop recommended that the studies conducted in the Pacific Northwest be replicated in other areas, specifically off Iceland and Norway (Perrin 1982). Killer whales are common off eastern Iceland and western Norway, particularly during periods in late summer and fall when herring (Clupea harengus) spawn (Christensen 1982, 1988 – this volume; Sigurjónsson 1984; Sigurjónsson et al. 1988 – this volume). Photographs and acoustic re-

cordings were taken in coastal waters of Norway during the fall of 1983 and 1984 (Lyrholm 1985, 1988 - this volume; Lien et al. 1988 this volume) and off the east coast of Iceland in the fall of 1985 and 1986 (Lyrholm et al. 1986; Sigurjónsson et al. 1988 - this volume). The acoustic recordings were made available to us for analysis. Calls were differentiated into categories, called discrete calls, by examining sonograms and listening. The method is described in detail by Ford (1984, 1987) and is frequently used in studies of bird vocalizations (Becker 1982). The process is similar in practice to that used in photoidentification, and has similar benefits and pitfalls, i.e. the scoring is somewhat subjective, so there is a small percentage of inter-observer variability in the identifications. In fact, however, the human eye and ear are better able to perform this complex pattern-matching task than are other standard means of acoustic analysis.

The analysis of North Atlantic killer whale calls began in early 1987. The classification presented herein is preliminary. Nevertheless, it includes a catalogue that can be expanded and modified as additional recornings from these areas are analyzed.

MATERIALS AND METHODS

Study area and recording procedures

Underwater recordings were made near killer whales off eastern Iceland and northwestern Norway by field observers engaged in photoidentification studies (Lyrholm et al. 1987; Sigurjónsson et al. 1988 - this volume; Lyrholm 1985, 1988 - this volume; Lien et al. 1988 - this volume). All recordings from Norway were made near Lofoten; those from eastern Iceland were made at eight locations (Fig. 1; Table 1). Recordings were made from small inflatable skiffs launched from a herring seiner or research vessels, or, less frequently from small motorized boats launched from shore. Field workers conducting the photoidentification studies obtained the recordings. Wherever possible, tape recordings were labelled to indicate the pod(s) present, with

aters of Nor-984 (Lyrholm et al. 1988 ast of Iceland yrholm et al. this volume). ade available differentiated calls, by exa-The method (1984, 1987)dies of bird he process is in photoidens and pitfalls, ubjective, so nter-observer In fact, howbetter able to natching task s of acoustic

c killer whale classification Nevertheless, be expanded corings from

ures made near d and northrs engaged in rholm et al. this volume; ne; Lien et al. igs from Northose from ght locations re made from rom a herring ess frequently unched from g the photo-

e recordings.

ordings were

present, with

Fig. 1. Locations off Iceland and Norway where recordings of killer whale calls were made.

"I" indicating an Icelandic group and "N" a Norwegian group. Recording systems differed slightly among years, but always consisted of a good-quality cassette recorder and hydrophone. The frequency responses ranged from 50Hz to 15kHz \pm 3dB at 4.75 cm/s (Tables 1 and 2).

Call classification and analysis

Calls were classified following the methods of Ford (1984, 1987). Discrete calls were composed of trains of pulses and contained one distinct component or more. A call component was defined by an abrupt shift in the interval between frequency bands in the sonograms, called a side-band interval or SBI (Ford 1984). The shifts in SBI were usually accompanied by a distinct change in tonal quality. According to Watkins (1967), the interval between the sidebands is equal to the pulse repetition frequency. We attribute differences in tonal quality of the call components to differences in pulse waveform and to changes in the pulse repetition frequency.

Discrete calls identified twice or more were assigned a catalog number and described by measuring the duration and the sideband interval for each of it components. When the SBI of a call was relatively constant, only the center SBI was measured. Categories of subtypes were created when a call contained variant components but retained the identifiable aural qualities and basic component structure of that call type. As we usually could not as-

TABLE 1
Summary of recordings off Iceland (See also Fig. 1, Lyrholm et al. 1987 and Sigurjónsson et al. 1988 – this volume).

	Date	Tape no.	No. whales	Pods present	Location	Equipment
1985	13 October 23 October	1505 1504	12–30 20–25	IA, IB, Misc. IB, Misc.	Kögur Reyðarfjörður	Marantz PMD 360 recorder custom preamp/hydrophone 50 Hz to 15 kHz at 4.75 cm/s
1986	20 October 29 October 30 October 31 October 7 November 13 November 16 November	1514 1515 1516 1517 1518 1519 1520	60–80 15–18 15–20 16–20 6 9 15–19	IF IB	3. Bakkaflói 4. Mjóifjörður 5. Mjóifjörður 6. Viðfjörður 7. Berufjörður 8. Seyðisfjörður 9. Fáskrúðsfjörður	Sony WM-D6C recorder InterOcean T-902 hydrophone 50 Hz to 15 kHz at 4.75 cm/s

TABLE 2
Summary of recordings off Lofoten Norway (See location 1 in Fig. 1 and Lyrholm 1985, 1988 – this volume).

	Date	Tape no.	No. whales	Pods present	Equipment
1983	18 September 18 September	1521 1523	? 20+	NB, NC pods NB, NC pods	Marantz PMD 360 recorder custom preamp/hydrophone 50 Hz to 15 kHz at 4.75 cm/s
1984	30 November 1 December 2 December 2 December 3 December	1525 1525 1525 1526 1526	? ? ? ? ?	? ? ?	Uher 4400 IC Report Stereo Gould CK-17U hydrophone 25 Hz to 20 kHz at 19 cm/s
1986	18 September 24 September 2 October 23 October	1522 1524 1524 1524	? ? ?	NB pod ? NC pod, NB pod	Same as 1983 system Unknown; Tape from M. Schultz

sociate these subtypes with particular pods, the categories must be considered tentative.

All calls were analyzed in real time on a UNISCAN II digital sonograph (Multigon Industries) set at 10 kHz. The frequency resolution at this setting was \pm 80 Hz, the time resolution \pm 6 milliseconds (ms). The beginning and ending of components were identified by eye. Therefore, the time resolution probably varied by a few milliseconds, depending on the quality of the recording. The sideband interval was measured relative to the peak frequency. Some discrete calls contained overlapping, high-frequency components that had either no sidebands or, more likely, sidebands

Fig. 2. An example of a discrete call containing a high-frequency, harmonically-unrelated component. Two side-band components are marked with arrows.

8 – this volume).

O 360 recorder np/hydrophone Hz at 4.75 cm/s

C recorder -902 hydrophone Hz at 4.75 cm/s

985,

order
bhone
5 cm/s
Stereo
bhone
em/s

M. Schultz

200 1600

ontaining a highomponent. Two h arrows. which were outside the flat range of the recording system (Fig. 2). The peak frequency for the beginning, ending or mid-point of these components was measured. Three or more calls of each type (or subtype) were measured for descriptive purposes.

Ford (1984) used single-link cluster analysis applied to measurements of call duration and SBI to estimate relatedness between calls. As yet this analysis on the Norwegian or Icelandic samples has not been completed. Here we present a general description of the related-

ness of calls from the two areas based on our preliminary classifications.

RESULTS

Recordings from Iceland

Recordings were obtained during nine encounters with killer whales off eastern Iceland (Table 1). Of these samples, seven contained calls that could be analyzed, although boat noise occasionally obscured the data. Twenty-four discrete calls and nine call subtypes were

TABLE 3

Icelandic call types recorded in the presence of photoidentified pods.

Pods:	IB, Misc	IA, IB Misc	IA, IB IE	IB	IB	IA, IB	IF	IB	IE
Tape no.	1504	1505	1514	1515	1516	1517	1518	1519	1520
Call type									
I1			X						
I2i			X						
I2ii			X						
I2iii			X						
I2iv			X						
I3			X						
I4			X						
I5i			X						
I5ii			X						
I5iii			X						
I5iv			X						
I6			X						
17			X			X(?)			
I8			X						
19			X						
I10		X	X						
I11i			X					X	
I11ii			X						
I12	X		X			X			
I13i			X		X				
I13ii			X						
I14i		X	X						
I14ii	X	21	X						
I16	1		4.5			X			
T107			X	X		4.			
T10			71	21		X			
120					X	21			
TOI					1	X		X	
TOI		v	v			X		1	
122		X	X X			Λ			
122									
I33			X		v				
I34		37			X				
I35		X							

identified (Table 3). Recordings made near Bakkaflói (see Fig. 1) on 20 October 1986 in the presence of over 60 feeding killer whales contained the greatest number of analysable calls, including representatives of eighteen discrete calls and nine subtypes. Because of the large number of whales in the area, it was impossible to assign the call types to any specific pod. Several of the discrete calls identified were subsequently found in recordings from other encounters, but no other recording contained calls of the same number and clarity. A total of six additional discrete calls were identified in three other encounters, including some recorded in the presence of a single pod (Table 3).

The components of Icelandic calls were most often swept or warbled pulsed sounds, buzzes, clicks and constant-frequency pulsed sounds. The reader is directed to Figure 3 and Appendix 1a for sonograms and measurements of acoustic parameters. Where possible the table also gives qualitative descriptions of the tone of the call components. In 24% of discrete calls, there was a harmonically-unrelated, high-frequency component which overlapped sections of the call. This component unquestionably was produced by the same animal, and was therefore considered another component of the call.

Five discrete call types from Icelandic whales were classified into subtypes. We do not have enough data to show whether these subtypes were associated with particular pods, except in one case. Recordings were made near the IB pod (see Sigurjónsson et al. 1988 – this volume) on three occasions when there were no other killer whales present. Therefore, a preliminary pod-specific repertoire of six discrete calls can be assigned to this group:

Fig. 3. Sonograms of discrete call types recorded off Iceland. Components are bracketed and numbered at the top of each figure. The catalogue number of each call type is given at the lower left of each sonogram. Cont'd pp. 231–233.

i measureere possible criptions of In 24% of ically-unrewhich overcomponent the same red another

Icelandic des. We do ether these cular pods, were made et al. 1988 – when there ent. Therepertoire of this group:

2.0

2.0

red at the top 1 pp. 231–233.

four calls (I13i, I17, I120 and I34) recorded on 29 and 30 October 1986 while the pod was feeding off Mjóifjörður and two call types (I11i and I21) were recorded on 13 November off Seyðisfjörður. Notably, three of these six discrete call types were not identified from the recordings of the encounter with the large group recorded off Bakkaflói, although the IB pod was present.

Recordings from Norway

Recordings were made on nine days in Norwegian waters near killer whales that were feeding or travelling (Table 2). Twenty-three discrete call types and 15 call subtypes were identified from these recordings (Table 4). The reader is directed to Figure 4 and Appendix 1b for sonograms and measurements of acoustic parameters. Like the discrete calls from killer whales in Icelandic waters, calls from Norwegian killer whales contained one to four components. However, Norwegian calls were different in their detailed component structure from calls described for killer whales from Iceland (see above) and the Pacific Northwest (Ford 1984).

Seven call subtypes were identified in the presence of the NB pod (see Lyrholm 1988 – this volume), when it was alone. Two contained high-frequency, harmonically unrelated components. We found no evidence of pod-specific subtypes.

Some call types occurred together consistently. For example, N18 frequently followed

TABLE 4
Norwegian killer whale call types recorded in the presence of photoidentified pods.

Pod(s)	NB, NC	NB, NC	NA	NA	NB	NB, NC
Таре по.	1521	1523	1525	1526	1522	1524
Call type						
N1i		X				X
N1ii		X				X
N1iii		X	X			
N1iv		X				
N2i	X	X				
N2ii	X	X				
N2iii	X					
N2iv	X					
N3i	X	X	X	X	X	
N3ii				X	X	
N4	X					X?
N5	X	X	X?	X?		
N6i	X	X				
N6ii	X	X				
N7	X	X	X	X?	X	X
N8ii		X	X	X		
N8ii		X				X?
N9	X	X	X	X		
N10i		X	X	X		
N10ii		X	X			
N11i		X	X?			
N11ii		****	X			
N12	X		X?		X	
N14i	X	X	0.00		X	
N14ii	X					
N15	71		X	X		
N16			X	X		
N17i	X	X	X	8.00	X	X
N17ii	X	X	X	X?		
N18	/1	X	X?		X?	
N19	X	X	X.	X		
N20	71	/1	X	X		
N21			X			
N22			X			
N23			X			
N24i			2 %	X		
N24i				X		
11/2411				21		

N17i. Such association are suggestive of higher-order structure in the call types as has been described by Ford (1984). We also found an instance in which two call types (N1ii and N11) were emitted between components one and two of an N6 call. The timing and amplitude of the composite call indicated it was produced by one individual. This observation suggests that components can be somewhat independent of one another.

Degree of overlap of call repertoires from Iceland and Norway

Most calls identified to date are areaspecific to Iceland or Norway, although a few discrete calls may represent variants of the same call type; these are discussed in detail below. Our conclusion must be considered tentative until we have analyzed a more extensive sample. Even so, qualitative clues lead us to conclude that the repertoires are distinct.

The few similarities in the call types from Iceland and Norway are instructive. Most were single component calls that are particularly difficult to categorize. For example, types N5 and I8 sound different, even to an inexperienced listener, but have similar component structure. The small sample of N5 calls was of poor quality, so we could not measure the differences more rigorously. Other similar calls included the single-component pairs I7–N7, I17–N17 and I19–N19, and two-component pairs I21–N15 and I31–N18. Of these, some (e.g. I17 and N17, N18) were what Ford (1984) describes as "variable" and "aberrant"

Fig. 4. Sonograms of discrete call types recorded off Norway. Components are bracketed and numbered at the top of each figure. The catalogue number of each call type is given at the lower left of each sonogram. Cont'd pp. 235–238.

more extenclues lead us es are dis-

types from ctive. Most are particular example, even to an similar composite of N5 calls not measure other similar ent pairs I7—two-composite. Of these, e what Ford I "aberrant"

ered at the top d pp. 235–238.

SECONDS

Fig. 4 (continued)

2.0

calls, which do not fall clearly into any category. Such calls may be readily identifiable when the call types are already well understood, but not when the call repertoires are relatively unknown.

We also found unique aural qualities common to many calls that may distinguish repertoires of the two areas. For example, calls from Norway that were particularly distinctive to the ear included types N1i, N4, N14 and N19, each of which had a "buzzy" or "raspy" quality not found in Icelandic calls. This difference is suggestive of a higher-order difference between repertoires of the two areas, as has been reported for North Pacific and Antarctic killer whales (Awbrey et al. 1982). However, we need more data to substantiate this observation, as we cannot exclude the possibility that all these sounds were made by members of only one pod.

DISCUSSION

Preliminary analysis of killer whale calls from Norwegian and Icelandic coastal waters indicates that the sampled population in each region has a distinct repertoire of discrete calls, with little evidence of call sharing between the regions. Discrete calls from both re-

gions were similar in frequency and component structure, but unique in the patterning of the call components and readily distinguishable by ear. Calls from both areas were also similar in frequency and component structure to those of killer whales from the Pacific Northwest (Ford 1984, 1987), but different in frequency and component patterning from those recorded in the Southern Hemisphere. Norwegian and Icelandic killer whales commonly produced "click-burst" sounds before and between frequency sweeps, unlike the Antarctic whales (Awbrey et al. 1982; Awbrey, unpubl. data).

Ford (1984) noted that killer whale pods sharing the same area sometimes had entirely different repertoires of calls, a finding that confounds any attempt to conclude that the differences we observed between Icelandic and Norwegian call repertoires are necessarily geographical differences. In the Pacific Northwest, call variation occurs at two levels: 1) within clans and 2) between clans. Killer whale pods within a clan share calls, but even shared calls often vary in structure from pod to pod. Pods of different clans share no discrete calls, but can share a geographic area and associate with one another, at least occasionally. The differences between Antarctic

and British Columbia repertoires appear to be greater than the interpod differences in British Columbia (Awbrey et al. 1982; Awbrey, unpubl. data), suggesting that differences in call repertoires may increase with increasing geographic and temporal isolation. Our observations of unique tonal qualities common to many Norwegian calls but absent in all Icelandic calls, may suggest the same.

The adaptive significance of discrete call repertoires in killer whales is still a matter of speculation. Killer whales have developed true dialects as well as geographical variation in vocal behavior (Conner 1980; Ford and Fisher 1983). A true dialect is defined as a variant in signaling behaviour which is confined to a social group or sub-population that is sympatric with other groups or populations of conspecifies, as opposed to geographic variation which is the result of allopatric drift.

2.0

and compo-

atterning of

distinguish-

s were also

nt structure

the Pacific

different in

rning from

emisphere.

hales com-

inds before

unlike the

1982; Aw-

whale pods

ad entirely

inding that

de that the

Icelandic

necessarily

cific North-

levels: 1)

ans. Killer

s, but even

from pod

are no dis-

aphic area

least occa-

Antarctic

Ford (1984) hypothesized that call dialects of clans developed during long periods of geographic isolation, and could thus also be an indicator of genetic drift. He suggested that discrete calls function as "contact" or "spacing" calls and that "graded" or "variable" calls are used among socializing animals, as is true for the calls of some primates (Marler 1976; Marler and Tenaza 1977; Byrne 1982). If the discrete calls of killer whales are used in situations involving long-range communication, and variable or graded signals are common in social situations, it is particularly important that researchers note the activity of the whales while recording. Criteria for categorizing call types in the Pacific Northwest sometimes depended on detailed knowledge of social behaviour of the whales. Ordinarily, detailed behavioural information is not readily available in a study of broader geographic areas, such as ours. To use discrete calls of killer whales as a stock assessment tool, one must know the variance of not only the discrete calls but also of any calls that might be confused with them.

The discrete call repertoires of killer whale pods can be used to measure associations, migration and, potentially, the structure and genetic affinities of a population. In British Columbia new pods are postulated to form by

the division of larger groups (Bigg 1982). In social primates, similar group fission has been documented (Nash 1976; Oliver et al. 1981), resulting in matrilines that are genetically distinct. Ford (1984) suggests that the dialects and "call traditions" of killer whales of the Pacific Northwest reflect the phylogenetic history of the population. As previously noted, however, patterns of acoustic divergence do not necessarily correspond with geographic separation in North Pacific killer whales, at least in the short-term. Therefore, the relationship between call divergence and genetic differentiation still must be clarified.

Bioacoustic studies deserve more emphasis than they have received in the past, despite the difficulties inherent in acoustic analysis. Because calls can be readily collected even under adverse conditions, such as darkness and fog, or when whales are underwater or at great distances, they are at the very least an important means of tracking movements of pods and clans. If they actually provide a reliable index of genetic variability, they can be useful management tool. It is important to clarify the relationship between genetic variability and similarities/differences in vocal dialects. Since various techniques are now available to describe the genetic relationships among groups and individuals (Hoelzel and Dover 1987), it is time to collect samples of calls and morphological or genetic material from the same areas. The combined use of photoidentification, genetic and bioacoustic techniques will help us to understand genetic affinities of killer whales worldwide.

ACKNOWLEDGEMENTS

We thank J. Lien, T. Lyrholm, J. Sigurjónsson, E. Thórdarson, E. Jónsson and M. Schultz for providing the recordings of killer whale calls used in this study, S. Leatherwood for overseeing the acoustic and photographic study efforts and Laura Parente and Sharon Korner for helping with the preparation of the manuscript.

LITERATURE CITED

Awbrey, F. T., J. A. Thomas, W. E. Evans and S. Leatherwood 1982. Ross Sea killer whale vocalizations: preliminary description and comparison with those of some Northern Hemisphere killer whales. Rep. int. Whal. Commn 32: 667–670.

Baker, M. C. 1982. Vocal dialect recognition and population genetic consequences. Amer. Zool. 22: 561–

569.

Balcomb, K. C., J. R. Boran and S. L. Heimlich 1982.
Killer whales in greater Puget Sound. Rep. int.
Whal. Commn 32: 681–686.

Becker, P. H. 1982. The coding of species-specific characteristics in bird sounds. *In* D. E. Kroodsma and E. H. Miller (Eds.), Acoustic Communication in Birds. Academic Press, New York, pp. 213.

Berzin, A. A. and V. L. Vladimirov 1983. A new species of the killer whale (Cetacea, Delphinidae) for the Antarctic waters. Zool. Zh. 62(2): 287– 295.

Bigg, M. A. 1982. An assessment of killer whale (Orcinus orca) stocks off Vancouver Island, British Columbia. Rep. int. Whal. Commn 32: 655–666.

Byrne, R. W. 1982. Primate vocalizations: structural and functional approaches to understanding. Behaviour 80: 241–285.

Christensen, I. 1982. Killer whales in Norwegian coastal waters. Rep. int. Whal. Commn 32: 633–641.

—— 1988. Distribution, movements and abundance of killer whales (Orcinus orca) in Norwegian coastal waters, 1982–1987, based on questionaire surveys. Rit Fiskideildar 11: 79–88.

Conner, D. A. 1980. Dialects versus geographic variation in mammalian vocalization. Anim. Behav. 30: 297–298.

Ellis, G., C. O. Matkin, J. D. Hall and S. Leatherwood In press. Killer whales (Orcinus orca) photoidentified in Prince William Sound, Alaska, 1976–1987. Can. Field Nat.

Evans, W. E., A. V. Yablokov and A. E. Bowles 1982. Geographic variation in the color pattern of killer whales (*Orcinus orca*). Rep. int. Whal. Commn 32: 687–694.

Ford, J. K. B. 1984. Call traditions and dialects of killer whales (*Orcinus orca*) in British Columbia. Ph. D. Thesis, University of British Columbia, Vancouver, B.C., 435 pp.

 1987. A Catalogue of underwater calls produced by killer whales (Orcinus orca) in British Columbia. Can. Data Rep. Fish. Aquat. Sci. 663: 165 pp.

and H. D. Fisher 1982. Killer whale (Orcinus orca) dialects as an indicator of stocks in British Columbia. Rep. int. Whal. Commn 32: 671–680.

— and H. D. Fisher 1983. Group-specific dialects of killer whales (Orcinus orca) in British Columbia. In

R. Payne (Ed.), Communication and Behaviour of Whales. AAAS Selected Symposia Series 76, Boulder, CO. Westview Press, pp. 129-161.

Hoelzel, A. R. and G. A. Dover 1987. Molecular techniques for examining genetic variation and stock identity in cetacean species. International Whaling Commission, Scientific Committee, April 1987, 66

pp. (unpubl.).

Jehl, J. R., W. E. Evans, F. T. Awbrey and W. S. Drieschmann. 1980. Distribution and geographic variation in the killer whale (Orcinus orca) populations of the Antarctic and adjacent waters. Antarct. J. U.S. 15(5): 161–163.

Leatherwood, S., K. C. Balcomb, C. O. Matkin and G. Ellis 1984a. Killer whales (Orcinus orca) of Southern Alaska. Results of field research 1984. Preliminary report. San Diego, Hubbs-Sea World Research Insti-

tute Tech. Rep. 84-175, 59 pp.

—, K. C. Balcomb, C. O. Matkin, G. Ellis. and J. D. Hall 1986. Killer whales (*Orcinus orca*) of southern Alaska. Results of field research 1984. Preliminary Report. Rep. int. Whal. Commn 37: 504–505 (abstract).

Lopez, J.C. and D. Lopez 1985. Killer whales (Orcinus orca) of Patagonia and their behaviour of intentional stranding while hunting near shore. J. Mamm. 66(1):

181-183

Lyrholm, T. 1985. A photographic and acoustic pilot study of killer whales (Orcinus orca) off the coast of Norway. Thesis, University of Stockholm, 51 pp. (unpubl.).

— 1988. Photoidentification of individual killer whales, Orcinus orca, off the coast of Norway, 1983–

1986. Rit Fiskideildar 11: 89-94.

—, S. Leatherwood, and J. Sigurjónsson. 1987. Photoidentification of killer whales (Orcinus orca) off Iceland, October 1985. Cetology. 52: 1–14.

Marler, P. 1976. Social organization, communication and graded signals: the chimpanzee and the gorilla. *In* P. P. G. Bateson and R. A. Hinde (Eds.), Growing points in ecology. Cambridge Univ. Press, Cambridge, pp. 239–280.

and R. Tenaza 1977. Signaling behaviour of apes. *In* T. A. Sebeok (Ed.), How animals communicate. Indiana Univ. Press, Bloomington, pp. 969–1033.

Nash, L. T. 1976. Troop fission in free-ranging baboons in the Gombe Stream National Park, Tanzania. Amer. J. Phys. Anthrop. 48: 63-77.

Oliver, T. J., C. Ober, J. Buettner-Janusch and D. S. Sada 1981. Genetic differentiation among matrilines in social groups of rhesus monkeys. Behav. Ecol. Sociobiol. 8: 279–285.

Perrin, W. F. (Ed.) 1982. Report of the workshop on identity, structure and vital rates of killer whale populations. Rep. int. Whal. Commn 32: 617–631.

E. D. Mitchell, J. G. Mead, D. K. Caldwell, M. C. Caldwell, P. J. H. van Bree and W. H. Dawbin

d Behaviour of Series 76, Boul-61.

987. Molecular ation and stock tional Whaling April 1987, 66

orey and W. S. and geographic s orca) populatraters. Antarct.

Matkin and G. ca) of Southern 34. Preliminary Research Insti-

Ellis. and J. D. ca) of southern 34. Preliminary 37: 504–505

whales (Orcinus or of intentional Mamm. 66(1):

I acoustic pilot off the coast of kholm, 51 pp.

dividual killer Norway, 1983-

jónsson. 1987. (Orcinus orca) 52: 1–14. communication and the gorilla.

(Eds.), Growiv. Press, Cam-

aviour of apes. communicate. p. 969–1033. anging baboons ark, Tanzania.

usch and D. S. nong matrilines Behav. Ecol.

e workshop on of killer whale 1 32: 617–631. ... Caldwell, M. W. H. Dawbin 1987. Revision of the spotted dolphin, *Stenella spp.* Mar. Mamm. Sci. 3(2): 99–169.

Sigurjónsson, J. 1984. Killer whale census off Iceland during October 1982. Rep. int. Whal. Commn 34: 611-614.

T. Lyrholm, S. Leatherwood, E. Jónsson and G. Víkingsson 1988. Photoidentification of killer whales, *Orcinus orca*, off Iceland, 1981 through 1986. Rit Fiskideildar 11: 99-114.

Watkins, W. A. 1967. The harmonic interval: fact or artifact in spectral analysis of pulse trains. *In* W. N. Tavolga (Ed.), Marine Bioacoustics, Vol. 2 W. N. Pergamon Press, New York, pp. 15–42.

APPENDIX 1a

Descriptive statistics of call types collected off Iceland (x = mean, s = standard deviation, n = sample size, C.V. = coefficient of variation, (S) = start, (C) = center, (E) = end, SBI = sideband interval, C = component, UC = harmonically-unrelated, high-frequency component). Frequencies were generally measured in the steady-state portion of a component; where this was impossible, a starting and ending frequency were measured. A note under "description" is included where the qualitative features of the component can be described in common language (BZ = buzz, CF = constant-frequency, US = upsweep, DS = downsweep, CL = clicks, UCH = chirp (rising), DCH = chirp (falling), W = warble).

Call type		Dui	ration(s)			Side-bar	nd interval(Hz	:)		
<u>I1</u>	Tot	C1	C2	C3	C4	SBI1	SBI2	SBI3	SBI4	
$x = \dots$	1.454	0.314	0.192	0.217	0.729	200	2251	516	1844	
$s = \dots, \dots$	0.015	0.075	0.054	0.028	0.099	12	228	42	120	
$n = \dots$	11	11	11	11	11	11	11	11	11	
$C.V. = \dots$	10.1	23.1	28.3	13.1	13.6	5.9	10.1	8.1	6.5	
Description		BZ	US	US-UCH	US-W				0.5	
I2i	Tot	C1	C2	UC(Tot)		SBI1	SBI2	UC(C)		
$x = \dots$	0.776	0.387	100727	(C		720	2500	7280		
$s = \dots$	0.039	0.013	0.060	1 To		0	136.6	445		
n =	4	3	4	-		4	4	3		
C.V. =	4.9	3.2	16.6	100		0	0.5	6.1		
Description		US	US				101701	27.5		
I2ii		Tot	C1	C2		SBI1	SBI2			
$x = \dots$	0.673	0.225	0.448			807	2593			
$s = \dots$	0.032	0.018	0.031			53.2	119.7			
n =	6	6	6			6	6			
C.V. =	4.7	8.2	6.9			6.6	4.6			
Description		US	US							
I2iii	Tot	C1	C2	Gap	C3	SBI1	SBI2			
$\chi = \dots$	1.071	0.594	0.478	1.312	3-77	840	1440			
$\varsigma = \dots$	0.225	0.124	0.101	0.477	:	56.5	0			
n =	2	2	2	2	7 <u>2</u>	2	2			
C.V. =	21	20.1	21.3	36.3	=	6.7	0			
Description		US	US	·	CL					
2iv	Tot	C1	C2			SBI1	SBI2			
(=	0.905	0.368	0.537			1800	3280			
1=	1	1	1			1	1			
Description		UCH	US							
3	Tot	C1	C2	C3	C4	SBI1	SBI2	SBI3	SBI4	UC(S
=	2.142	0.072	1.365	0.097	0.394	400	1360	320	1600	6800
=	0.193	0.013	0.385	0.005	0.151	=	113.1	-	_	113.1
=	2	2	2	2	2	1	2	1	1	2
2.V. = ,	9.1	18.8	28.2	5.1	38.3	er sin	8.3	=	•	1.6
Description		BZ	US-CF	W	US					1.0

Call type		Durat	tion(s)	· · · · · ·	Side-ban	d interval(Hz)			
I4	Tot	C1	C2		SBI1	SBI2			
x =	0.966	0.864	0.102		2427	1147			
$s = \dots$	0.105	0.118	0.013		46.2	46.2			
$n = \ldots$	3	3	3		3	3			
$C.V. = \dots$	10.9	13.7	12.9		1.9	4.1			
Description		US	W		C2 has r	netallic qual	ity		
I5i	Tot	C1	C2		SBI1	SBI2			
x =	1.714	0.858	0.856		1870	691			
$s = \dots$	0.150	0.109	0.095		119	73.9			
$n = \dots$	12	12	12		12	11			
$C.V. = \ldots$	8.8	12.7	11.1		6.4	10.7			
Description		US-DS	DS-CF-	US					
I5ii	Tot	C1	C2		SBI1	SBI2	-		
$\chi = \dots$	1.390	0.588	0.782		2220	656			
$s = \dots$	0.109	0.025	0.089		410	67			
$n = \dots$	5	5	5		5	5			
$C.V. = \dots$	7.8	4.3	11.4		18.6	10.2			
Description			DS-CF-	US	5ii has st	ronger DS,	US		
I5iii	Tot	C1	C2		SBI1	SBI2			
x =	1.937	1.062	0.875		1120	560			
n =	1	1	1		1	1			
Description		DS	DS-CF-	US					
I5iv	Tot	C1	C2		SBI1	SBI2(S)	SBI3(C)	SBI2(E)	
x =	1.370	0.537	0.883		1946	600	1067	747	
s =	0.070	0.062	0.070		46.2	56.6	166.5	46.2	
n =	3	3	3		3	3	3	3	
C.V. =	5.1	11.5	8.4		2.4	9.4	15.6	6.2	
Description		US-DS	CF-W						
16	Tot	C1	C2	UC(Tot)	SBI1	SBI2	UC(S)	UC(E)	
x =	1.369	0.160	1.209	1.326	575	1221	5237	8762	
$s = \dots$	0.430	0.034	0.454	0.381	44.8	153	117	944.5	
n = .5	13	8	7	17	11	15	17	17	
C.V. =	31.4	4.7	37.7	28.7	7.8	12.5	2.2	10.7	
Description		US	US						
17	Tot	C1			SBI(S)	SBI(E)			
$x = \dots$	0.723	0.061			468	772			
s =	0.143	0.015			62.7	106.3			
n =	20	7			10	20			
C.V. =	19.9	24.6			13.4	13.7			
Description	UC-CF		ort chirp a	t start	mew-like	quality			
18	Tot	C1			SBI(S)	SBI(E)			
x =	1.163	0.058			542	832			
s =	0.248	0.010			82.7	125.1			
n =	13	7			9	22			
C.V. =	21.3	17.5			15.3	15			
Description	US		ort chirp a	t start	15.5	13			
Description	US	C1 15 5110	ar cump a	start					

Call type		Duratio	on(s)		78		Side-band	interval(Hz)			
19	Tot	C1	C2				SBI1	SBI2			
x =	1.306	0.981	0.322				1680	2240			
s =	0.177	0.168	0.013				0	0			
n =	2	2	2				2	2			
C. $V_{1} =$	13.5	17.2	4.2				0	0			
Description		US	DS								
I10	Tot						SBI1(S)	SBI1(E)			
x =	0.726						1712	2464			
s =	0.199						292	285			
$n = \ldots$	5						5	5			
$C.V. = \ldots$	27.4						17	11.6			
Description	US-W						peak freq	uency 5-8 K	Hz		
I11i	Tot	C1	Gap	C3			SBI1	SBI3(S)	SBI3(E)		
χ =	1.840	1.367	0.255	0.194			1907	2053	2967		
$\S = \ldots \ldots$	0.297	0.248	0.104	0.048			126	432	458		
$n = \dots$	13	11	13	13			13	12	12		
$C.V. = \ldots$	16.1	18.1	40.7	24.5			6.6	21	15.4		
Description		US-DS			12	27			anic	CDIA	
I11ii	Tot	C1	C2	C3	Gap	C4	SBI1	SBI2	SBI3	SBI4	
$\chi = \dots$	1.495	1.073	0.108	0.083	0.195	0.089	1760	2280	1480	2160	
$s = \dots$	0.086	0.050	0.025	0.014	0.013	0.016	0	57	57	113	
$n = \dots$	3	3	3	3	3	3	3	3	3	2	
$C.V. = \dots$	5.7	4.7	23.4	17.3	6.7	17.6	0	2.4	3.8	5.2	
Description		US-CH					200 - 200				
I12ii	Tot						SBI1				
χ =	1.300						848				
$s=\ldots\ldots$	0.326						70				
$n = \dots$	9						10				
$C.V. = \dots$	25						8.3				
Description							hollow q	(C)(c) (Apr. 100)			
I13i	Tot	C1	C2				SBI1	SBI2(S)	SBI2(E)		
$x = \dots$	1.391	1.138	0.216				1200	1371	2343		
$s=\ldots\ldots$	0.365	0.356	0.043				137	108	452		
$n = \dots$	8	7	7				9	7	7		
$C.V. = \dots$	26.2	31.3	19.7				11.4	7.8	19.3		
Description		US-CF	US								
I13ii	Tot	C1	C2				SBI1	SBI2(S)	SBI2(E)		
x =	0.955	0.832	0.145				989	1865	2717		
s =,	0.130	0.129	0.062				88	405	495		
n =	10	10	10				11	11	12		
$C.V. = \dots$	13.6	42.9	42.9				8.9	21.7	18		
Description		US	US								
I14i	Tot						SBI1	SBI2			
x =	1.353						1552	1440			
s =	0.244						269	203			
n =	5						5	5			
$C,V,=\ldots$	18						17.3	14.2			
Description	US-CF-	W					Variable	number of	warbles		

Call type	24 (001		e ()						
Call type		Du	ration(s)			Side-ban	d interval(Hz)	
I14ii	Tot					SB1(S)	SB1(E)		
$x = \dots$						1787	1520		
s =)				201	277		
n =						3	3		
C.V. = Description						11.2	18.2		
	US-W		- 39						
<u>I15</u>	Tot	UC(T	ot)			SBI1(S)	SBI1(E)	UC(S)	_
$x = \dots$	0.671					1467	2160	6213	
s =	0.056	i =				122	80	532	
n =	3	-				3	3	3	
C.V. =	8.4	7-0				8.3	3.7	8.5	
Description	US								
I17	Tot					SBI1(S)	SBI1(E)		
x =	1.719					780	2000		
s =	0.622					101	173		
n = C.V. =	4					4	4		
Description	36.2 US					12.9	8.6		
I19	100000								
-	Tot					SBI1(S)	SBI1(C)	SBI1(E)	
x =	0.481					400	520	400	
s =	0.035					0	56.6	0	
$n = \dots$ $C.V. = \dots$	2 7.3					2	2	2	
Description	W-CF-	W				0	10.8	0	
I20	390	YY				MOSC CONTROLS	urs in pairs		
5-14-7	Tot					SBI1(S)	SBI1(E)		
x =	0.355					550	2240		
s =	0.085					202	429		
$C.V. = \dots$	5 23.8					4	5		
Description	US					36.8	19.1		
I21	Tot	C2	C3	Con	D.u. (Tat)	0010	ODIA		
x=	0.977		1991	Gap	Buzz (Tot)	SBI2	SBI3		
$s = \dots$	0.303	0.299	0.827 0.113	0.521 0.038	0.145	640	2240		
n =	4	2	4	3	0.079 3	113	65.3		
C.V. =	31	8.7	13.6	7.2	54.3	2 17.7	4		
Description		CF	US	1.2	US	17.7	2.9		
I31	Tot	C1	C2			SBI1	SBI2		
$\overline{x} = \dots$	0.856	0.240	0.660	-		896	1128		
s =	0.146	0.038	0.164			92.1	43.8		
$n = \dots$	4	5	5			5	5		
$C.V. = \dots$	17.1	15.9	24.8			10.2	3.9		
Description		US	US			10.2	5.7		
I32	Tot	C1	C2	C3		SBI1	SBI2	SBI3	
x =	0.963	0.340	0.162	0.460		800	1291	2000	
s =	0.183	0.120	0.068	0.071		124	108	170	
$n = \dots$	7	7	7	7		6	7	5	
$C.V. = \dots$	19	35.2	41.7	15.4		15.5	8.3	8.5	
Description		US	CF	US-UCH			V-1029		

Call type		Durati	on(s)		Side-band	interval(Hz)	
I33	Tot	C1	C2		SBI1	SBI2		
x =	0.884	0.378	0.506		460	560		
	0.004	0.031	0.027		28.3	0		
n =		2	2		2	2		
C.V. = .	0.5	8.2	5.3		6.1	0		
Description	n	UCH	DCH					
I34	Tot	C1	C2		SBI1	SBI2		
x =	0.962	0.762	0.200		1520	1840		
n =	1	1	1		1	1		
Description	n	US-CF	W					
135	Tot	C1	Gap	C2	SBI1	SBI2	SBI3	
x =	1.574	0.618	0.700	0.956	160	600	1040	
n =		1	1	1	1	1	1	
Description		US-CF		CF-US				

APPENDIX 1b

Descriptive statistics of call types collected off Norway (x = mean, s = standard deviation, n = sample size, C.V. = coefficient of variation, (S) = start, (C) = center, (E) = end, SBI = sideband interval, C = component, UC = harmonically-unrelated, high-frequency component). Frequencies were generally measured in the steady-state portion of a component; where this was impossible, a starting and ending frequency were measured. A note under "description" is included where the qualitative features of the component can be described in common language (BZ = buzz, CF = constant-frequency, US = upsweep, DS = downsweep, CL = clicks, UCH = chirp (rising), DCH = chirp (falling), W = warble).

Call type	Dura	tion(s)				Side-bar	ıd interval(Hz	:)		
N1i I	Tot	C1	C2	C3	C4	SBI2(S)	SBI2(E)	SBI3		
x =	0.558	78 8	0.473	0.085	75°	187	187	560		
s =	0.066	-	0.046	0.025	÷:	23	23	560		
n =	3	23	3	3	224	3	3	2		
C.V. =	11.8	m a	9.7	29.4	58	12.3	12.3	100		
Description			BZ-US			N1 often	heard in sec	quences of	2–3	
N1ii	Tot	C1	C2	C3	C4	SBI2(S)	SBI2(E)	SBI3	UC	
χ = , , , , , , , , , , , , , , , , , ,	1.427	0.860	0.502	0.066	75	240	293	580	6053	
s =	0.050	0.014	0.040	0.003	- 3	69	162	141	167	
n =	3	3	3	3	-	3	3	2	3	
C.V. =	3.6	1.6	7.9	4.5	-	28.8	55.3	24.4	2.8	
Description		CF	BZ-US							
N1iii	Tot	C1	C2	C3	C4	SBI2(S)	SBI2(E)			
x =	0.456	-8	0.456	=	-8	173	173			
s =	0.013	=8	0.013	_	-33	23	23			
n =	3	=6	3	_	_	3	3			
$C,V_{\cdot} = \dots$	2.9	1-1	2.9	-	-:	13.3	13.3			
Description			BZ							

Nliv	Call type	D	uration(s)				0:1.1					
x = 1,320 0.620 0.520 - - 160 180 5880 s = 0,120 0,110 0,040 - - 0 23 1390 n = 4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 <th< td=""><td>source of</td><td></td><td>10.0</td><td></td><td></td><td>-</td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td></th<>	source of		10.0			-			<u> </u>			
s = 0.120 0.110 0.040 - - 100 23 139 n = 4 4 4 4 - - 4 4 4 4 4 4 4 4 4 4 4 4 4 C.V. = 9.1 17.77 7.77 - - 0 12.8 2.4 Description CF BZ - - 0 12.8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.2 2.4 2.4 2.2 2.4 2.2 2.0 2.2 2.6 3.2 3.2 3.3<		20.000	24.5) SBI2(E) UC			- 1
n = 4 4 4 - - 4 4 4 4 CV. 9.1 17.7 7.7 - - 0 12.8 2.4 Description CF BZ - - 0 12.8 2.4 N2i Tot C1 C2 C3 C4 SBI2(S) SBI2(E) SBI3(S) SBI3(E) SBI4(S) SB x = 1.727 - 0.725 0.737 0.098 1493 2613 560 560 2427 264 s = 0.149 - 0.062 0.190 0.001 244 122 80 80 46 s = 0.149 - 0.062 0.190 0.001 244 122 80 80 46 s = 0.149 - 0.062 0.190 0.001 244 122 80 80 46 s = 0.190 0.01 0.001 0.002 0.						2						
C.V. = 9.1 17.7 7.7 - - 0 12.8 2.4 Description CF BZ SBZ SBI2(S) SBI2(E) SBI3(S) SBI3(E) SBI4(S) SB N2i Tot C1 C2 C3 C4 SBI2(S) SBI2(E) SBI3(S) SBI3(E) SBI4(S) SB x = 1.727 - 0.725 0.737 0.098 1493 2613 560 560 2427 264 s = 0.149 - 0.062 0.190 0.001 244 122 80 80 46 n = 3 - 3				- Same		==			139			
Description CF BZ N2i Tot C1 C2 C3 C4 SBI2(S) SBI2(E) SBI3(S) SBI3(E) SBI4(S) SB x = 1.727 - 0.725 0.737 0.098 1493 2613 560 560 2427 264 s = 0.149 - 0.062 0.190 0.001 244 122 80 80 46 n = 3 - 3	C.V. =	01			-	-			4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Description	. 2.1			_	<u>=</u> ;	0	12.8	2.4			
$ \begin{array}{c} x = & 1.727 & - & 0.725 & 0.737 & 0.098 & 1493 & 2613 & 560 & 560 & 2427 & 264 \\ s = & 0.149 & - & 0.062 & 0.190 & 0.001 & 244 & 122 & 80 & 80 & 46 \\ n = & 3 & - & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3$	N2i	Tot	C1	C2	C3	C4	SBI2(S)	SBI2(E)	SBI3(S)	SBI3(E)	SBI4(S)	SBI4(E
s = 0.149 - 0.062 0.190 0.001 244 122 80 80 46 n = 3 - 3 <	$x = \dots$	1.72	7 –	0.725	0.737	0.098	1493	2613	4.00	100000		
N = 3			9 –	0.062	0.190	0.001						
C.V. = 8.6 - 25.8 US 21.0 DCH-US 16.3 US 4.7 14.3 14.3 1.9 0 N2ii Tot C1 C2 Gap C3 SBI1 SBI2 SBI3(S) SBI3(E) x= 1.910 0.15 0.791 0.23 0.856 1504 2544 544 600 s= 0.120 0.038 0.080 0.109 0.083 307 131 88 89 n= 5 <th< td=""><td>n =</td><td>3</td><td>-</td><td>3</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>	n =	3	-	3	3							0
Description US DCH-US US SBI3 SBI2 SBI3	$C,V,=\ldots$	8.6	-	25.8	21.0	16.3						3
x= 1.910 0.15 0.791 0.23 0.856 1504 2544 544 600 s= 0.120 0.038 0.080 0.109 0.083 307 131 88 89 n= 5	Description			US	DCH-US			11.0	14.5	1.3	U	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N2ii	Tot	C1	C2	Gap	_	SBI1	SBI2	SBI3(S)	SBI3(F)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.910	0.15	0.791	0.23	0.856				20000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.120	0.038	0.080	0.109	0.083						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n=	5	5	5	5	5	5					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C.V.=	6.3	25.3	10.1	47.4	9.7	20.4					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CF	US	DCH-US				.0.2	11.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.65535			C2	Gap	C3	SBI2(S)	SBI2(E)	SBI3(S)	SBI3(E)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.813	0.296	0.841	1474	2617	589	640		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	0.096	0.138	0.225	78					
C.V. = 21.9 - 11.8 46.6 26.8 5.3 4.9 12.9 10.8 Description Tot C2 Gap C3 C4 SBI2(S) SBI2(E) SBI3(S) SBI3(E) SBI4(S) SBI4 x = 1.743 0.897 0.289 1.075 0.229 1333 2667 640 827 2240 2293 s = 0.577 0.061 0.089 0.082 0.087 185 46 113 46 487 378			2 23		7	7	7					
N2iv Tot C2 Gap C3 C4 SBI2(S) SBI2(E) SBI3(S) SBI3(E) SBI4(S)		21.9	-	11.8	46.6	26.8	5.3	4.9				
x = 1.743 0.897 0.289 1.075 0.229 1333 2667 640 827 2240 2293 s = 0.577 0.061 0.089 0.082 0.087 185 46 113 46 487 378	AND THE RESERVE TO THE PARTY OF			US		DCH	191.000			2010		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53V-540	Tot	C2	Gap	C3	C4	SBI2(S)	SBI2(E)	SBI3(S)	SBI3(E)	SBI4(S)	SBI4(E)
s = 0.577			0.897	0.289	1.075	0.229	1333	2667	640	2000		
		0.577	0.061	0.089	0.082	0.087	185					
n = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				3	3	3	3					
$c.v. = \dots$ 33.1 6.8 30.8 7.6 38.0 13.9 1.7 17.7 5.6 21.7 16	,,V. =	33.1	6.8	30.8		38.0	13.9	1.7				16.5
Description US DCH-US	War -		US		DCH-US		Selection Nation			510	21.7	10.5
N3i Tot SBI1(S) SBI1(E)	1227	0.00					SBI1(S)	SBI1(E)				
x = 0.778 1584 1840							1584	1840				-
$s = \dots $							381	515				
n = 5 5 5	***						5	5				
C.V 28.7							24.1	28.0				
Description US-CF	William Control of the Control of th		-	2000 E								
N3ii Tot C1 C2 SBI1(S) SBI2(E) SBI2(E)	the state of	PART NAME OF					SBI1(S)	SBI1(E)	SBI2(S)	SBI2(E)		
x =							293	360	2080	2133		
s = 0.276 0.203 0.072 46 40 80 46							46	40	80			
3 3 3							3	3	3			
C.V. = 18.5 28.4 9.2 15.7 11.1 3.9 2.2	.v. =	18.5					15.7	11.1	3.9	2.2		
Description BZ US-CF C2 equivalent to N3i above	NAT THE RESERVE OF TH		BZ	US-CF			C2 equivale	ent to N3i a	above			
N4i Tot C1 C2 C3 SBI1(S) SBI3(E) SBI3(E)		Tot	C1	C2	C3		SBI1(S)	SBI1(E)	SBI3(S)	SBI3(E)		
x =			1.119	0.931	0.950		200000	07/4/04/	1280			
s = 0.827			0.428	0.387	0.453							
n=				3								
C.V. =	V. =	26.9		41.6	47.7							
Description W-US BZ US	scription		W-US	BZ	US				554.5	177.1		

Appendix 11	(continued)
-------------	-------------

14(S) 21.7

SBI4(E)

SBI4(E)

Call type	Durati	ion(s)				Side-band	interval(Hz)				
N5i	Tot					SBI1(S)	SBI1(C)				
x =	0.875					427	613	7			
s = ,	0.200					61	180				
n =	3					3	3				
C.V. =	22.9					14.3	29.4				
Description	UCH										
N6i	Tot	C1	Gap	C2		UC1(S)	UC1(E)	SBI2(S)	UC2		
$\chi = \dots$	1.560	0.172	1.080	0.901		5660	5920	2040	5640		
$S = \dots \dots$	0.760	0.024	0.551	0.06		264	643	201	167		
n =	4	4	4	4		4	4	4	4		
C.V. =	48.7	13.9	51	5.1		4.6	10.9	10	2.9		
Description		US									
N6ii	Tot	C1	Gap	C2	C3	SBI1(S)	SBI1(E)	SBI2(S)	SBI2(E)	SBI3	UC1
x =	1.924	0.185	0.766	0.935	0.375	5733	5813	200	253	2027	5707
s =	0.368	0.003	0.213	0.035	0.044	244	201	0	23	201	185
n =	3	3	3	3	3	3	3	3	3	3	3
$C,V. = \dots$	19.1	1.6	27.8	3.7	11.7	4.3	3.5	0	9.1	9.9	3.2
Description		US		CF	BZ	C2 somet	imes preced	led by a bu	ZZ		
N7	Tot	UC(Tot)			SBI1(S)	SBI1(E)				
x =	0.715	8.78				431	531				
s =	0.121	-				100	129				
n =	18	-				18	18				
C.V. =	16.9					23.2	24.3				
Description	US					N7 often	occurs with	N12 in sec	uence		
N8i	Tot	C1	C2			SBI1(S)	SBI1(E)	SBI2(S)	SBI2(E)		
x =	0.976	0.838	0.139			270	380	740	770		
s =	0.100	0.092	0.035			20	23	95	50		
n =	4	4	4			4	4	4	4		
$C,V. = \dots$	10.3	11	25.2			7.4	6.1	12.8	6.5		
Description		US	US			Buzzy qu	ality				
N8ii	Tot	C1	C2			SBI1(S)	SBI(E)				
x =	0.679	0.679	:-			320	360				
s =	0.050	0.050	8=0			0	57				
n =	4	4	-			4	4				
C.V. =	7.4	7.4	200			0	15.8				
Description		US									
N9i	Tot					SBI1(S)	SBI1(E)				
$\overline{\mathbf{x}} = \dots$	1.027					360	1160				
s =	0.172					40	106				
n =	3					3	3				
$C.V. = \dots$	16.7					11.1	9.1				
Description	US										
N10i	Tot	C1	C2			SBI1(S)	SBI1(E)	SBI2(S)	SBI2(E)		
x =	0.470	0.273	0.197		-	387	547	1347	1587		
s =	0.074	0.040	0.050			83	83	295	234		
n =	3	3	3			3	3	3	3		
C.V. =	15.7	14.7	25.4			21.5	15.2	21.9	14.7		
Description		US	UCH			N10 calle	occur in pa	ire or cerie	c		

Call type	D	uration(s)				Side-be	and interval(F	Iz)			
N10ii	Tot	C1	C2			SBI1(S		500 P. P. C.	S) SBI2(1	5)	
$x = \dots$		8 0.154	0.654			387	453	693		-)	
$s = \dots \dots$		0.014	0.004			83	46	46	960		
$n = \dots$. 3	3	3			3	3	3	80		
$C.V. = \ldots$. 1.6	9.3	0.5			21.5	10.2	6.7	3		
Description		US	UCH			21.5	10.2	0.7	8.3		
N11i	Tot					SBI1(S) SBI1(E)			
$x = \dots$. 0.930					150	410	,			
s =						20	119				
n =	. 4					4	4				
C.V. =						13.3	29				
Description	BZ						alls occur in	naire			
N11ii	C1(1st)	C1(2nd)			The second second	st SBI(E)		nd CDI/E))J	
$x = \dots$	0.331	0.604				347	453	320	9330	ena	
s =		0.025				46.2	46.2		613		
n =	3	3				3	3	0	166.5		
$C.V. = \dots$	14.7	4.3				13.3	10.2	3	3		
Description	CF-US	CF-US					alls occur in		27.2		
V12i	Tot					SBI(S)	SBI(E)	pairs. (1st	and znd)		
(=,,,,,,,,,,,	0.960					1336					
= ,	0.076					102	1480				
= .,,	10					102	142				
C.V. =	7.9					7.6	10				
Description	US					7.0	9.6				
I14i	Tot	C1	Gap	C2	C3	SBI1(S)	SBI1(E)	SBI2	CD12/C)	CDI2/E)	
=	1.951	0.202	0.197	0.776	0.825	1093		110000000	SBI3(S)	SBI3(E)	
=	0.323	0.078	0.053	0.065	0.122	0.452	1593	509	600	794	
=	7	7	7	7	7	7		0.149	95	43	
.V. =	16.6	38.6	26.8	8.4	14.8	41.4	7	7	7	7	
escription		US	-1110	BZ	CF	41.4	8.6	29.3	15.8	5.4	
14ii	Tot	C1	C2	C3	C4	SBI1	UC1	CD12/C)	CDI2(E)	GDI (G)	
=,,	1.994	0.212	0.897	0.845	0.316	1573	76.00274	SBI3(S)	SBI3(E)	SBI4(S)	SBI4(E)
=	0.566	0.028	0.224	0.046	0.010	46	333	573	773	1827	2013
=	3	3	3	3	3	3	23	61	46	61	101
V. =	28.1	13.2	25	5.4	3.2	2.9	6.9	3	3	3	3
escription		US	BZ	CF	US	2.7	0.9	10.7	5.9	3.3	5
.5i	Tot	C1	C2			SBI1(S)	SBI1(E)	SBI2(S)	SBI2(E)		
=	0.958	0.379	0.579	-		293	347	1387			
=	0.031	0.003	0.029			46.2	46.2	743	1653		
=	3	3	3			3	3	3	789.3		
V. =	3.2	1.0	5.1			15.8	13.3		3		
scription		CF	US-CF			15.6	13.3	53.6	47.7		
6i	Tot					SBI1(B)	SBI1(E)				
	0.733					400	2320				
	0.225					80	138.6				
	3					3	3				
/. =	30.8					20.0	5.9				
scription	US					20.0	3.9				

BI4(S)

SBI4(E)

Call type	Dura	tion(s)			Side-band	l interval(Hz)	00			
N17i	Tot				SBI1(S)	SBI1(E)				
$\chi = \dots$	1.598				768	1136				
$s = \dots \dots \dots$	0.460				156	301				
$n = \ \dots \dots \dots$	5				5	5				
$C.V. = \dots$	28.8				20.3	26.5				
Description	US									
N17ii	Tot				SBI1(S)	SBI1(E)				
$\mathbf{x} = \dots \dots$	2.028				693	441				
$\varsigma = \ldots \ldots$	0.164				46	483				
$n = \dots \dots \dots ,$	3				3	3				
C.V. =	8.1				6.6	9.1				
Description	US-DS			7.	variable	call				
N18i	Tot				SBI1(S)	SBI1(E)				
$\chi = \dots$	1.199				400	1147				
$s = \dots$	0.198				160	46				
n =	3				3	3				
C.V. =	16.5				40	4.0				
Description	US				Often pr	eceded by N	N17i			
N19i	Tot				SBI1(S)	SBI1(E)				
$x = \dots$	0.466				216	248				
s =	0.040				83	91				
n =	5				5	5				
C.V. =	8.6				38.4	36.7				
Description	US									
N20i	C1				SBI(S)	SBI(E)				
$\mathbf{x} = \dots$	1.701				340	900				
$s = \dots \dots$	0.334				76.6	40				
n =	3				3	3				
$C.V. = \dots$	19.6				22.5	4.4				
Description	US									
N21i	Tot	C1	C2	C3	SBI1(S)	SBI1(E)	SBI2(S)	SBI2(E)	SBI3(S)	SBI3(E)
$\mathbf{x} = \dots$	1.292	0.159	0.246	0.887	920	880	280	400	680	1160
$s = \dots \dots$	0.142	0.042	0.048	0.098	56.6	113.1	56.6	0	56.6	56.6
n =	2	2	2	2	2	2	2	2	2	2
$C.V. = \dots$	11.0	2.6	19.8	11.0	6.1	12.9	20.2	0	8.3	4.9
Description		DS	US	US						
N21ii	Tot	C1	C2	C3	SBI1(S)	SBI1(E)	SBI3(S)	SBI3(E)		
$\mathbf{x} = \dots$	0.596	0.105	0.137	0.353	960	1240	680	840		
s =	0.30	0.018	0.085	0.042	113.1	282.8	56.6	56.6		
n =	2	2	2	2	2	2	2	2		
C.V. =	0.1	16.7	6.2	1.2	11.8	22.8	8.3	6.7		
Description		US		US-DS						
N22i	Tot	C1	C2		SBI1(S)	SBI1(E)	UC(S)	UC(E)		
ζ =	0.753	0.206	0.548		1973	2000	5120	7707	-	
; = , ,	0.033	0.010	0.135		122.2	80	138.6	468.8		
1 =	3	3	3		3	3	3	3		
$C,V,=\ldots\ldots$	17.9	16.0	18.8		6.2	4.0	2.7	6.1		
Description		CF	US							

Call type	Dura	tion(s)	Side-band interval(Hz)								
N23i	Tot	C1	C2		SBI1(S)	SBI1(E)	SBI2(S)	SBI2(E)			
x =	0.785 0.034 3 4.4	0.652 0.092 3 6.4 US	0.133 0.041 3 6.9 UCH		507 46.2 3 9.1	853 92.4 3 10.8	1467 488.8 3 33.3	2160 80 3 3.7			
N24i	C3				SBI3(S)	SBI3(E)					
x =	1.039 0.258 3 24.8 DS				1200 160 3 13.3	400 240 3 60.0					
N24ii n=1	Tot 1.073	C1 0.168	C2 0.187	C3 0.718	SBI1(S) 1200	SBI1(E) 1280	SBI2(S) 1760	SBI2(E) 1600	SBI3(S) 1360	SBI3(E) 480	