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Preface

A great deal of water has found its way
into the oceans since the days when Martin
Knudsen developed his precision method for
chlorinity based on a Mohr-titration and
Bjorn Helland-Hansen introduced the T, §
diagram, which has since then so well served
physical oceanographers. Aside from this,
physical oceanographers have not, until re-
cently, made much use of chemistry in their
research. This can largely be ascribed to the
fact that suitable methods were not available,
except for simple techniques mainly based
on preformed nutrients, reactive silicate or
the relationship between oxygen (or nutri-
ents) and density. As is well known, these
routine methods have been extensively used
by some oceanographers in the past and are
still used for estimating or quantifying water
mass composition. In recent decades marine
chemistry has developed at an accelerated
rate, and today chemical oceanographers
have at their disposal precise and powerful
analytical techniques which they can use, not
only to investigate chemical properties,
chemical processes and chemical speciation
of major, minor and trace constituents in the
sea, but also to provide information useful
for other oceanographic disciplines.

The idea to hold a symposium devoted to
the topic of “Chemical tracers for studying
water masses and physical processes in the
sea” evolved from discussions which took
place in early 1983 ar a Nordic meeting on
the marine science cooperation in future
between Nordic counitries and the role of
chemistry in that context. The very first draft
of a proposal was developed in consultation
with Professor Gunnar Kullenberg, Uni-

versity of Copenhagen. The proposal was
submitted to the Nordisk Kollegium for Fys-
isk Oceanografi whose members decided to
support it.

The objectives of the Symposium were to
promote and stimulate inter-disciplinary co-
operation in marine research, in particular
between physical and chemical oceano-
graphers of the Nordic countries. In light of
this, the main emphasis in the programme
was placed on the application of chemical
methods, especially tracers, for studying the
distribution and movement of water masses
and physical processes, as well as physical
tracer methods and studies of the water mass
characteristics of a few specific oceano-
graphic regions. To achieve this goal, ma-
rine scientists from the Nordic countries and
in addition a few international experts on
trace elements and chemical oceanographi-
cal tracer techniques, were invited (o partici-
pate and present papers on original work as
well as review papers. Furthermore, a few
contributions from other research areas were
included, viz. marine biology, marine geo-
logy and sea ice studies.

The Symposium was organized by the
University of Iceland in cooperation with the
Marine Research Institute, Reykjavik and
the Nordisk Kollegium for Fysisk Oceano-
grafi. It was held at the University of Iceland
in Reykjavik August 29 — September 1,
1984. The organizing committee consisted of
Unnsteinn Stefdnsson (chairman), Univers-
ity of Iceland; Svend Aage Malmberg,
Marine Research Institute, Reykjavik, and
Jon Olafsson, Marine Research Institute,
Reykjavik.




Abstracts of papers presented at the Sym-
posium were included in the preliminary
programme distributed to participants prior
to the meeting. The participants (listed in
Appendix 1) presented 26 papers, 21 of
which are printed in this volume, either in
extenso or as extended abstracts. All of the
papers here published have been subjected to
a review process.

Thanks are due to Nordisk Kollegium for
Fysisk  Oceanografi,  Fiskimdlasjoour,
Reykjavik and Nordiska Forskarkurser for
financial support which made the Sym-
posium possible, and to the director of

the Marine Research Institute, Reykjavik,
Jakob Jakobsson, for the generous offer io
print the proceedings in the Institute’s publi-
cation. The editor wishes to express his
thanks to the reviewers whose critical re-
marks have benefited the pdapers of this
volume, and to the authors for their co-
operation. Finally, the staff of Prentsmidja
Hafnarfjaroar hf., in particular the chief
printer, Mr. Albert Thorsteinsson, are to be
commended for their patience, efficiency
and ready collaboration.

Unnsteinn Stefinsson
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Sources of chemical differences in sea water

David Dyrssen
Department of Analytical and Marine Chemistry
Chalmers University of Technology and University of Gdoteborg
S5-412 96 Goteborg, Sweden

In spite of the fact that the seas are thin
layers on the globe (a mean depth of 4 km
can be compared with an average radius of
6367 km) and subjected to considerable
wind stress and heating, there are numerous
concentration gradients in the oceans. The
sources of these gradients may be steady
state processes with or without a seasonal
pulse or transients. This paper is intented to
be an overview of the sources of chemical
differences in the seas.

CONTAMINANTS

Different pollutants produced by mar are
probably the most useful sources of chemi-
cal differences for tracing water masses and
mixing processes. A data collection of C-14
(half-life 5730 = 40 a) carbon dioxide in the
atmosphere and ocean surface water by
Nydal et al. (1980) shows the pulse in the
beginning of the 1960s due to testing of
heavy nuclear devices by USA and USSR.
The decrease after 1963 is due to exchange
of "CO, in the air for "CO, in the
ocean. The decrease would correspond to a
half-life of 7 years for CO, in the air
rather than 10 years, if the tropospheric con-
tent had not been affected by Chinese and
French tests. In spite of the variations of
C-14 in the ocean surface the depth profiles
indicate down-mixing of the surface water.
(See treatments by Ostlund and Stuiver
1980, and Quay and Stuiver 1980).

Qur results for the Spitsbergen area are
shown in Figure 1. The author’s samples
from the Ymer expedition in 1980 were ana-
lyzed by Ingrid Olsson at the University of
Uppsala. In July 1957 Fonselius and Ost-
lund (1959) sampled the Barents Sea and
measured C-14. Their results, which are in-
cluded in Figure 1, showed that without the
extensive bomb testing the measurements
would give practically no information about
the vertical advection. The results of Stuiver
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Fig. 1. Carbon-14 measurements by Dyrssen and Ols-
son for the Spitsbergen (Svalbard) area, and by Fonsel-
ius and Ostlund (1959) for the Barents Sca. (From
Dyrssen 1982).
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Fig. 2. Part of the decay serics of uranium-238 show-

ing the principal species.

and Ostlund (1980) for the northernmost
stations in the Geochemical Ocean Sections
(GEOSECS) Atlantic Track 1972-73
(74°56'N and 1°7'W in the Greenland Sea)
gave a mean value of —5.11 * 0.38% be-
tween 820 and 3552 m which agrees with our
results. The results indicate that the conta-
mination of the Spitsbergen area between
1972 and 1980 was mostly due to inflowing
water from the North Atlantic, which had a
higher A™C in 1972 (around +15%).

The contamination of the Arctic surface
water by HTO (the half-life of H-3 is 12.35
a) from bomb tests has been determined by
Ostlund (1980). The contamination of

deeper water in the Greenland and Norwe-
gian Seas made it possible for Ostlund and
Fine (1979) to trace the deep water forma-
tion in the Atlantic Ocean.

Radioactive contaminants from Sellafield
effluents into the Irish Sea have proven to
be useful tracers of the penetration of North
Atlantic water into the North Sea and the
Arctic Ocean. Aarkrog and Livingston have
treated this point source of radioactivity in
this volume. Some results for the Greenland
waters have been reported in Nature (Aar-
krog et al. 1980).

Figure 2 shows part of the main decay
series of uranium with the principal chemi-
cal forms in seawater. Uranium(VI) in the
form of the negatively charged tricarbonate
complex is not easily removed. Thérium in
the form of an uncharged hydroxo complex
is rapidly removed with descending particu-
late matter. Radium behaves much in the
same way as barium although the source is
quite different. Lead is also removed with
particulate matter. Thorium in the sedi-
ments generates radium and radon; an ex-
cess of radon can be observed if the bottom
water is not quickly mixed in. In an NSF
proposal Smethie has suggested measure-
ments of radium and radon in surface
waters. The loss of radon is used to calculate
the gas exchange rate across the air-sea
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Fig. 3. Atmospheric time history of krypton-85 (dpm
m™) and freons (107 moles in the atmosphere, left
scale). (From a Transient Tracers in the Ocean (TTO)
proposal by W. M. Smethie.)
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interface. Smethie has treated another
radioactive inert gas, krypton-85 (half-life
10.26 a), in this volume.

The atmospheric histories of krypton-85,
freon-11 (CCLF, bp = 23.82), freon-12
(CCLE,, bp= —29.79) are known (see Fig.
3). The ratio between the freon concentra-
tions is shown in Figure 4. The variation of
this ratio allows dating of water masses that
have been in contact with the atmosphere.

304
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Fig. 4. Time history of the atmospheric freon-12/11
ratio. (From Fig. 3.)

Bullister and Weiss (1983) found different
depth profiles for the two freons in the
Greenland and Norwegian Seas. The con-
clusion from the data is deep convective
mixing in the Greenland Sea and lateral
mixing between the two seas below 1500 m.

Other halocarbons have been treated in
the thesis of Fogelgvist (1984). Bromoform
is formed from organic substances in sea
water upon chlorination. In fresh water with
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Fig. 5. Annual global release of carbon tetrachloride
(left-hand scale) and tetrachloro ethylene (right-hand
scale). (From Dyrssen 1982).

low concentrations of bromide chloroform
will be the main halocarbon. Bromoform is
also generated from coastal algae belts. This
permits tracing of waters flowing around
Spitsbergen. Results from the Ymer expedi-
tion have been published (Dyrssen 1982;
Fogelqvist 1984) and were discussed at a
meeting in Goteborg (Carmack and Rudels
1983). The estimated annual global release
of carbon tetrachloride and tetrachloro
ethylene are shown in Figure 5 and a com-
parison with carbon-14 data is made in
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Fig. 6. Comparison between the depth profiles of car-
bon tetrachloride, tetrachloro ethylene and carbon-14.

(From Dyrssen 1982).




Figure 6. The lack of agreement in layers
above 400 m is probably due to different
sources. Contamination of sea water with
carbon tetrachloride and tetrachloroethy-
lene will mainly occur in the industrial belt
between 30° and 60°N.

BIOGENIC PRODUCTS

Photosynthesis and subsequent digestion
of photosynthetic particles leads to many
chemical differences in the oceans Dis-
solved organic compounds with limited half-
lives are formed as exudates by the produc-
tion of phytoplankton. The photosynthetic
production in the oceans is mainly limited
by the supply of nitrate from intermediate
waters. The reason is probably that some
nitrogen is lost in the decay of proteins.
Figure 7 illustrates that proteins are decom-
posed to ammonia by enzymatic processes

Proteins
Peptides +
Aminoacids

A4

Proteins — NH3 + H* = NHs' ; pK=93

Urea

NH;0H + H' = NH3;0H*; pK=6.0

N2

]

N,O
]
(NO)
NO,™ +H* = HNO, ; pK= 33
(NOp)

Proteins - NOj + H* = HNO; ; pK=-14

Fig. 7. Nitrogen species in the transters upon produc-
tion and decomposition of proteins (intermediates:
peptides, amino acids and urea).
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mCO; + nNO; + pSOZ + gSiO, + rCa®s MHPO,

+ H,0

(CH,0 ) (GH,); (NHCH,CO Ju (NHCH,CS), -
(8i0,)y( CaCO; ), ( GHPOM )
+ z0,+a0H

Fig. 8. Plankton formation stoichiometry including
soft parts (carbohydrates, fats and proteins) and hard
parts (silica and carbonate).

involving peptides, amino acids and urea as
intermediates. In the bacterial transfer of
ammonia to nitrate some nitrogen is lost as
gascous dinitrogen and dinitrogen oxide.
This loss has to be compensated for on a
global scale by nitrogen fixation. Reduction
of nitrate to ammonia mainly occurs by
photosynthetic production of proteins, but
in limited areas reduction also occurs in an-
oxic waters. Thereby nitrogen can be lost in
gaseous forms.

The stoichiometry of the formation of
plankton including zooplankton with hard
parts in the form of silica and calcium car-
bonate is shown in Figure 8. Many chemical
shifts (Fig. 9) that occur upon the produc-
tion and decomposition of plankton can be
measured (Dyrssen 1977) and the GEO-
SECS data include nitrate, phosphate, silica
and oxygen as well as alkalinity and total
inorganic carbonate. About 10% of the
amino acids in the proteins contain sulphur
groups which are formed from sulphate,
The influence on the sulphate concentration
from this process is, however, not possible
to determine.

M=s+t+2u+2v+ 14y, n=u+y,
P=V, g=X, r=y, Z=8+15t+35u+
+55v+ 1 and a=n+2p-2r-1

Fig. 9. Chemical shifts upon plankton formation
(cf. Fig. 8).
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The composition of the particulate matter
produced in the euphotic surface layer is
somewhat different from the composition of
the particles that reach intermediate waters
and the continental shelves. Most ocean
waters below 200 m have a nitrate to phos-
phate ratio close to 15, but in deep Baffin
Bay the ratio is 9.6 (Jones et al. 1984).
Overviews of oxygen, phosphate and silica
reveal marked oxygen minima and phos-
phate maxima in the intermediate water
around 500 m within the tropics. On a
world-wide basis one can see that the decay
processes mostly influence the following re-
gions: Eastern Atlantic and Pacific, Weddell
and Bering Seas, Arabian Sea and Bay of
Bengal. Subarctic waters are rather low in
phosphate while high values of oxygen are
found in arctic and antarctic waters. This is
of course due to sinking of cold water. Thus
both lateral and vertical gradients are set
up. For oxygen at 500 m the lateral grad-
ients are in the order of 600:100 or 550:50
(wM:pM) and for phosphate 1:3 (WM:uM).

Qualitatively the decay of particulate
matter in the regeneration zone follows the
stoichiometry in Figure 8 which can be seen
from the depth profiles in Hawaiian waters
(Dyrssen 1977). However, the stoichio-
metry varies with the depth and the carbon-
ate from the hard parts is released after
most of the soft parts have decayed.

The main sources of dissolved silica
within the ocean are the Antarctic waters
and the Bering Sea. The flow of Pacific
water through the Arctic Ocean can be
traced with Bering Strait silica. Sediment in-
vestigations show that practically no silica is
stored in the sediments. Measurements at
Soviet ice camps by Rusanov (1975) show
that the water layers above 200 m in the
Arctic Ocean are not well mixed and that
inflowing water over the sill at Bering Strait
with a depth of 40 to 60 m sinks. This gives
rise to the well-known intermediate silica
maxima. An increase of the silica concentra-
tion in the East Greenland outflow could

also be seen in the data from the Ymer ex-
pedition. A silica budget for the Arctic
Ocean (Anderson et al. 1983) demonstrates
that the Bering Strait water is advected to-
wards the east and thus silica is transported
from the Pacific to the North Atlantic via
the Canadian sounds and the Baffin Bay.

Inflows over sills occur also in the Black
Sea, the Baltic Sea and fjords. In principle
the inflows are pulses of heavy water that
are sandwiched at different depths below
the sill. If the water below the sill is stag-
nant, the sulphidic part of the sulphide
(mainly in the form of H,S and HS™) will
react with the inflowing oxygen. Thereby
various oxidation products are formed (sul-
phur, thiosulphate, sulphite and sulphate)
which can be determined. In the Black Sea
Ostlund (1974) tried to determine the strata
by measurement of carbon-14. After studies
of Byfjorden (Dyrssen and Svensson 1982)
we have concentrated our efforts on the
Norwegian fjord Framvaren. In this case we
could see two sources of organic matter, one
originating from phytoplankton and the
other from leaves. In Iceland Einarsson and
Stefansson (1983) have studied sulphidic
bottom water in Lake Miklavatn. Stig Fon-
selius has treated the Baltic Sea in this
volume.

OTHER DIFFERENCES

In order to explain the chemical differen-
ces in the oceans we need mixing models as
well as the source histories and knowledge
of the biogeochemical processes that
influence different substances.

Meteoric water has low values of 3O
while no isotope separation occurs upon
formation of sea ice. Thus it is possible to
distinguish the dilution of seawater by river
water from that by sea ice melt water. Rus-
anov’s samples from the Central Arctic
Ocean were measured by Vetstein and Ma-
lynk at Kiev (1974). Their slope of 8O
against salinity is different from the slope




obtained by Tan et al. (1983) in the East
Greenland current. This calls for further in-
vestigations including the Bering Sea and
the runoff from the glaciers on East Green-
land.

Sea water that reacts with hot basalt may
loose its magnesium and sulphate. In fact
these processes may occur on such a large
scale thaty they balance the river inputs
(McDuff and Morel, 1980). Sea water that
has reacted with hot basalt in rift areas
should therefore have low values of magne-
sium and sulphate to chlorinity ratios. How-
ever, it would be expected that these chemi-
cal differences would soon not be discerni-
ble due to mixing processes. The differences
found by Almgren et al. (1977) are probably
due to analytical difficulties. It seems as rift
water is preferably traced by determinations
of helium-3 (Edmond et al. 1982).
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