

WORKING GROUP ON WIDELY DISTRIBUTED STOCKS (WGWIDE)

VOLUME 3 | ISSUE 95

ICES SCIENTIFIC REPORTS

RAPPORTS SCIENTIFIQUES DU CIEM

ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM COUNSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk info@ices.dk

The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary.

This document is the product of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council.

ISSN number: 2618-1371 I © 2021 International Council for the Exploration of the Sea

ICES Scientific Reports

Volume 3 | Issue 95

WORKING GROUP ON WIDELY DISTRIBUTED STOCKS (WGWIDE)

Recommended format for purpose of citation:

ICES. 2021. Working Group on Widely Distributed Stocks (WGWIDE). ICES Scientific Reports. 3:95. 874 pp. http://doi.org/10.17895/ices.pub.8298

Editors

Andrew Campbell

Authors

Thomas Brunel • Andrew Campbell • Neil Campbell • Pablo Carrera • Rui Catarino • Anatoly Chetyrkin • Gersom Costas • Laurent Dubroca • Roxanne Duncan • Sólva Eliasen • Patricia Goncalves • Åge Højnes • Sondre Hølleland • Eydna í Homrum • Jan Arge Jacobsen • Teunis Jansen • Alexander Krysov • Bernhard Kühn • Gwladys Lambert • Lisa Anne Libungan • David Miller • Richard Nash • Leif Nøttestad • Anna H. Olafsdottir • Alessandro Orio • Martin Pastoors • Are Salthaug • Sonia Sanchez • Aril Slotte • Claus Sparrevohn • Erling Kåre Stenevik • Nikolay Timoshenko • Jens Ulleweit • Sindre Vatnehol • Morten Vinther

I

4 Herring (*Clupea harengus*) in subareas 1, 2, 5 and divisions 4.a and 14.a, Norwegian spring-spawning herring (the Northeast Atlantic and Arctic Ocean)

4.1 ICES advice in 2021

ICES advised that when the long-term management strategy agreed by the European Union, the Faroe Islands, Iceland, Norway, and the Russian Federation is applied, catches in 2021 should be no more than 651 033 tonnes. The advice for 2021 was 24% higher than that for 2020 due to an upward revision in the 2016 year class, which contributes more to the catches in 2021.

4.2 The fishery in 2021

4.2.1 Description and development of the fisheries

The distribution of the 2020 Norwegian spring-spawning herring (NSSH) fishery for all countries by ICES rectangles is shown in Figure 4.2.1.1. The catches by ICES statistical rectangle and quarter are seen in Figure 4.2.1.2. The 2020 herring fishing pattern was similar to recent years. The fishery began in January on the Norwegian shelf and focused on overwintering, prespawning, spawning and post-spawning fish (Figure 4.2.1.2, quarter 1). In the second quarter, the fishery was insignificant (Figure 4.2.1.2, quarter 2). In summer, the fishery moved into Faroese, Icelandic and International waters (Figure 4.2.1.2, quarter 3). In autumn and winter, the fishery continued in the central part of the Norwegian Sea but also commenced in the overwintering area in the fjords and oceanic areas off Lofoten. 59.5% of the catches were taken in the fourth quarter (Figure 4.2.1.2, quarter 4). Catches of Norwegian spring-spawning herring inside the NEAFC regulatory area was estimated by the working group to be 95 322 tonnes in 2020, which represents 13% of the total catch.

4.3 Stock description and management units

4.3.1 Stock description

A description of the stock is given in the Stock Annex.

4.3.2 Changes in migration

Generally, it is not clear what drives the variability of migration of the stock, but the biomass and production of zooplankton are likely factors, as well as feeding competition with other pelagic fish species (e.g. mackerel and to a lesser extent blue whiting) and oceanographic conditions (e.g. limitations due to cold areas). Besides environmental factors, the age distribution in the stock will also influence the migration. Changes in the migration pattern of NSSH, as well as that of other herring stocks, are often linked to large year classes entering the stock initiating a different migration pattern, which subsequent year classes will follow. The large 2016 year class has now entered the adult stock. The distribution in the feeding area in 2021 as observed in the ecosystem survey in May appeared to be similar to that of older year classes, although not quite as far west. In 2017/2018 there was a shift in wintering areas. While wintering has been observed in

I

fjords west of Tromsø (Norway) for several years, the 2013 year class wintered in fjords farther north (Kvænangen) since 2017/2018 while the older fish seemed to have had an oceanic wintering area. A similar pattern was observed during winter 2020/2021. The old fish wintered in the Norwegian Sea while part of the 2016 year class wintered in Kvænangen. From Norwegian catches during winter, it was, however observed that a large fraction of the 2016 year class wintered in the ocean further north (north of 70°N). The oldest and largest fish move farthest south and west during feeding, and the older year classes were in May through July 2021 concentrated in the southwestern areas during the feeding season.

4.4 Input data

4.4.1 Catch data

Catches in tonnes by ICES Division, ICES rectangle and quarter in 2020 were available from Denmark, Faroe Islands, Germany, Greenland, Iceland, Ireland, The Netherlands, Norway, Russia, the UK (Scotland), Poland and Sweden. The total working group catch in 2020 was 720 937 tonnes (Table 4.4.1.1) compared to the ICES-recommended catch of a maximum of 525 594 tonnes. The majority of the catches (82%) were taken in Division 2.a as in previous years. Samples were not provided by Greenland, The Netherlands, Poland, the UK or Sweden (less than 2% of the total catch were taken by these countries). Sampled catches accounted for 98% of the total catches, which is on a similar level as in previous years. The sampling levels of catches in 2020 in total, by country and by ICES Division are shown in Tables 4.4.1.2, 4.4.1.3 and 4.4.1.4. Catch by nation, ICES Division and quarter are shown in Table 4.4.1.5. The software SALLOC (ICES, 1998) was used to calculate total catches in numbers-at-age and mean weight at age representing the total catch. Samples allocated (termed fill-in in SALLOC) to cells (nation, ICES Division and quarter) without sampling information are shown in Table 4.4.1.5.

4.4.2 Discards

In 2008, the Working Group noted that in this fishery an unaccounted mortality caused by fishing operations and underreporting probably exists (ICES, 2008). It has not been possible to assess the magnitude of these extra removals from the stock, and considering the large catches taken after the recovery of the stock, the relative importance of such additional mortality is probably low. Therefore, no extra mortality to account for these factors has been added since 1994. In previous years, when the stock and the quotas were much smaller, an estimated amount of fish was added to the catches.

The Working Group has not had access to comprehensive data to estimate discards of herring. Although discarding may occur on this stock, it is considered to be low and a minor problem for the assessment. This is confirmed by estimates from sampling programmes carried out by some EU countries in the Data Collection Framework. Estimates of discarding in 2008 and 2009 of about 2% in weight were provided for the trawl fishery carried out by the Netherlands. In 2010 and 2012, this métier was sampled by Germany. No discarding of herring was observed (0%) in either of the two years. An investigation on fisheries induced mortality carried out by IMR with EU partners on fisheries induced and unreported mortality in mackerel and herring fisheries in the North Sea concluded with an estimated level of discarding at around 3%.

In order to provide information on unaccounted mortality caused by fishing operations in the Norwegian fishery, Ipsos Public Affairs, in cooperation with IMR and the fishing industry, conducted a survey in January/February 2016. The survey was done by phoning skippers and interviewing them. A total of 146 herring skippers participated in the survey, 31 skippers representing the bigger vessel group and 115 skippers representing the smaller vessel group. The data

L

provided an indication that there have been periods of increased occurrence of net bursting. This was seen especially in the period 2007–2010. There was, however, no trend in the size of catches where bursting has occurred.

When it comes to slipping, the data showed a steady increase in the percentage that has slipped herring from 2004–2012, and then a significant decline in recent years. The variations in the proportion that have slipped herring were largely driven by the skippers on smaller coastal purse-seiners. Average size of purse-seine hauls slipped seems to be relatively steady over the period. However, the average size of net hauls slipped was lowest in the recent period.

4.4.3 Age composition of the catch

The estimated catch-at-age in numbers by year are shown in Table 4.4.3.1. The numbers are calculated using the SALLOC software. In 2020, catches (in numbers) were dominated by the 2013 (19%) and 2016 (24%) year classes.

Catch curves were made on the basis of the international catch-at-age (Figure 4.4.3.1). For comparison, lines corresponding to Z=0.3 are drawn in the background. The big year classes, in the periods of relatively constant effort, show a consistent decline in catch number by cohort, indicating a reasonably good quality of the catch-at-age data. Catch curves for year classes 2005 onwards show a flatter curve than for previous year classes indicating a lower F or a changed exploitation pattern.

4.4.4 Weight-at-age in catch and in the stock

The weight-at-age in the catches in 2020 was computed from the sampled catches using SALLOC. Trends in weight-at-age in the catch are presented in Figure 4.4.4.1 and Table 4.4.4.1. The mean weights at age for most of the age groups have generally been increasing in 2010–2013 but levelled off around 2014. In the most recent years the weight-at-age seems to have decreased slightly for most ages—earlier for the younger ages than for the older. A similar pattern is observed in weight-at-age in the stock which is presented in Figure 4.4.4.2 and Table 4.4.4.2. The mean weight-at-age in the stock was based on the survey in the wintering area until 2008. Since then the mean weight-at-age in the stock was derived from samples taken in the fishery in the same area and at the same time as the wintering surveys were conducted in.

4.4.5 Maturity-at-age

In 2010 the method for estimating maturity-at-age in the stock assessment of NSSH was changed based on work done by the "workshop on estimation of maturity ogive in Norwegian spring-spawning herring" (WKHERMAT; ICES, 2010a). The method which was adopted by WGWIDE in 2010 (ICES, 2010b) is based on work by Engelhard *et al.* (2003) and Engelhard and Heino (2004). They developed a method to back-calculate age-at-maturity for individual herring based on scale measurements, and used this to construct maturity ogives for the year classes 1930–1992.

The NSSH has irregular recruitment pattern with a few large year classes dominating in the stock when it is on a high level. Most of the year classes are, however, relatively small and referred to as "normal" year classes. The back-calculation dataset indicates that maturation of the large year classes is slower than for "normal" year classes.

WKHERMAT and WGWIDE considered the dataset derived by back calculation as a suitable candidate for use in the assessment because it is conceived in a consistent way over the whole period and can meet standards required in a quality controlled process. However, the back-calculation estimates cannot be used for the most recent years since all year classes have to be fully

matured before the calculation can be made. Therefore, assumptions have to be made for the recent year classes. For recent year classes, WGWIDE (ICES, 2010) decided to use average back-calculated maturity for "normal" and "big" year classes thereby reducing maturity-at-age for ages 4, 5 and 6 when strong year classes enter the spawning stock. The default maturity ogives used for "normal" and "big" year classes are given in the text table below.

age	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
normal year class	0	0	0	0	0.4	0.8	1	1	1	1	1	1	1	1	1	1
strong year class	0	0	0	0	0.1	0.6	0.9	1	1	1	1	1	1	1	1	1

Assumed values should be replaced by back-calculated values in the annual assessments for each year where updated values are available. In 2021 the year 2016 was updated with back-calculated values used in the present assessment. Assumed and updated values are shown in figure 4.4.5.1. The 2016 year class was considered a strong year class by the working group based on the assessment where several survey indices of this year class are included, and maturity-at-age 5 was set to 0.6 for this year class in the 2021 assessment according to the table above. The maturity ogives used in the present assessment are presented in Table 4.4.5.1.

4.4.6 Natural mortality

In this year's assessment, the natural mortality M=0.15 was used for ages 3 and older and M=0.9 was used for ages 0–2. These levels of natural mortality are in accordance to previous years and their justification is provided in the stock annex. Information about deviations from these levels in the time-series, e.g. due to diseases, are also provided in the stock annex.

4.4.7 Survey data

The surveys available for the assessment are described in the stock annex. Only two of the available surveys are used in the final assessment and will therefore be dealt with in this section:

The International Ecosystem Survey in the Nordic Seas (IESNS) in May. This survey covers the entire stock during its migration on the feeding grounds, the adults in the Norwegian Sea and adjacent waters ("Fleet 5") and the juveniles in the Barents Sea ("Fleet 4"). The Norwegian acous tic survey on the spawning grounds in February ("Fleet 1")

The cruise reports from the IESNS (WD14) and spawning survey (WD08) in 2021 are available as working documents to this report. The spawning survey and IESNS in the Norwegian Sea and Barents Sea were both carried out successfully in 2021.

The abundance estimates from "Fleet 1" are shown in Table 4.4.7.1 and Figure 4.4.7.2; from "Fleet 4" in Table 4.4.7.2 and Figure 4.4.7.1 and "Fleet 5" in Table 4.4.7.3 and Figure 4.4.7.1. In 2020 it was decided to use the bootstrap mean values as point estimates of abundance instead of the baseline estimates. This applies to the years were the software Stox is used to estimate abundance. Variance estimates from the bootstrap runs were already being used in the assessment, thus it is more logical to also use point estimates from the bootstrap. A comparison using point estimates for both bootstrap and baseline was made, and the effect on the assessment was negligible.

Catch curves were made on the basis of the abundance estimates from the surveys "Fleet 1" (Figure 4.4.7.3) and "Fleet 5" (Figure 4.4.7.4). The same arguments are valid for the interpretation of the catch curves from the surveys as from the catches. In 2010, the numbers of all age groups

I

decreased suddenly in "Fleet 5" and this is seen as a drop in the catch curves that year. This drop has continued for some of the year classes and the year classes 1998 and 1999 are disappearing faster from the stock than expected. This observed fast reduction in these age classes may also be influenced by the changes in "Fleet 5" catchability, with seemingly higher catchability in years 2006—2009. Like the catch curves from commercial landings, the corresponding curves from "Fleet 5" are also quite flat for year classes 2005 onwards. As "Fleet 1" was not conducted in the years 2009–2014, there is a gap in the catch curves, making it difficult to interpret them.

4.4.8 Sampling error in catches and surveys

Sampling errors for Norwegian catch-at-age for the years 2010–2020 is estimated using ECA (Salthaug and Aanes 2015, Hirst *et al.* 2012). Using the Taylor function (Aanes 2016a) to model the sampling variance of the catches yields a very good fit ($R_{adj}^2 = 0.94$) and using this function to impute missing sampling variances for catch-at-age yields relative standard errors shown in Table 4.4.8.1. It is assumed that the relative standard errors in the total catches are equal to the Norwegian catches (which comprise ~60% of the total catches). Sampling errors for survey indices are estimated using StoX (<u>http://www.imr.no/forskning/prosjekter/stox/nb-no</u>) and Johnsen *et al.* (2019). For Fleet 1, estimates are available for the years 1988–1989, 1994–1996, 1998–2000, 2005–2008, and 2015–2021, for Fleet 4 estimates of sampling errors are available for 2009–2019 and 2021, and for Fleet 5 for 2008–2021. Missing values for sampling variances are imputed using the Taylor function which provides good fits (R_{adj}^2 's are 0.95, 0.98 and 0.96 respectively). The resultant relative standard errors are given in Tables 4.4.8.2–4.4.8.4. Due to the very good fits of the Taylor functions, estimates of relative standard where empirical estimates are available, are also replaced by the model predicted values to reduce potential effects of imprecise estimates of errors.

4.4.9 Information from the fishing industry

No information was made available to the working group.

4.5 Stock assessment

The first benchmark of the NSSH assessment took place in 2008 with the assessment tool TA-SACS selected as the standard assessment tool for the stock. A second benchmark took place in 2016 (WKPELA - ICES, 2016) where three assessment models were explored - TASACS, XSAM and one separable model. WKPELA accepted XSAM as the standard assessment tool for the NSSH.

4.5.1 XSAM final assessment 2021

The XSAM model is documented in Aanes 2016a and 2016b. XSAM includes the option to utilize the prediction of total catch in the assessment year (typically the sum of national quotas) along with the precision of the prediction. This approach was changed in 2017 when it was found that the model estimated a highly variable and significantly lower catch compared to the working group's prediction (sum of national quotas). In addition, this caused an abrupt change in the selection pattern from 2017 and onwards. The abrupt change in the selection pattern was not fully understood by the working group, but the effect was less pronounced if not using the catch prediction from the model for 2017. Therefore, it was decided to not utilize the prediction of total catches in 2017 when fitting the model to data (i.e. the assessment) and consequently in the short-term forecast. The same approach is taken in the 2021 assessment, i.e. the catch prediction for

2021 is not included when fitting the model to data. The resulting estimated selection pattern is gradual (Figure 4.5.1.1) and in line with the current knowledge of the fishery. It is important to note that this has marginal effect on the assessment, but larger effects on the prediction and short-term forecast.

The 2021 XSAM assessment was performed with the same model options as in 2017. In summary, this means that the model was fit with time varying selectivity and effort according to AR(1) models in the model for fishing mortality; the recruitment was modelled as a process with constant mean and variance; the standard errors for all input data were predetermined using sample data (Tables 4.4.8.1–4.4.8.4), and a scaling constant common for all input data to allow additional variability of the input data that is not controlled by sampling is estimated. Additional details on the assessment settings are given in the Stock Annex.

The same input data over the same age ranges was used as in 2017. At the 2016 benchmark, data from 1988 and onwards was used from ages 3–12+ with input data catch-at-age, Fleet 1 and Fleet 5, At WGWIDE 2016, it was decided to start the model at age 2 to allow short-term predictions with reasonable levels of variability. To achieve this, age 2 from Fleet 4, and age 2 in catch-at-age was included in input data. Evaluation of diagnostics including lower ages than 2 and/or other fleets resulted in excluding lower ages than 2 and other fleets for the final assessment.

The parameter estimates from the 2021 assessment are shown in Table 4.5.1.1 and in Figure 4.5.1.10. For a precise definition of the parameters, refer to Aanes 2016a in ICES (2016). Note that the variance components σ_1^2 (variability of the separable model for F) and σ_R^2 (variability of recruitment) are rather imprecise. The estimate of the scaling constant *h* is larger than 1, indicating that the model adds additional variability on the observation errors than explained by the sampling errors alone.

The catchabilities for all the fleets are on average positively correlated indicating some uncertainty due to a common scaling of all surveys to the total abundances although the correlations in general are small (Figure 4.5.1.2). There is a slight negative correlation between σ_1^2 (variability of the separable model for F) and σ_2^2 (variability of the AR process for time varying selectivity) indicating little contrast in data for separating variability of the separable model from variability due to changes in selection pattern. The slopes in the multivariate AR model for time-varying selectivity gradually changes from negative to positive, but is expected as it is imposed due to the sum to zero constraint for the selection (see Aanes 2016a for details).

The weights each datum is given in the model fit (inverse of the sampling variance) is proportional to the empirical weights derived from sampling variances (Tables 4.4.8.1–4.4.8.4) which shows that the strong year classes in general are given larger weight to the model than weaker year classes, and the ordering of the average weights (from high to low) is Catch-at-age, Fleet 5, Fleet 1 and Fleet 4 (Figure 4.5.1.3).

Two types of residuals are considered for this model. The first type is the model prediction (based on all data) vs. the data. In such time-series models, the residuals based on the prediction which uses all data points will be serially correlated although useful as they explain the unexplained part of the model (*cf* Harvey 1990 p 258). This means that patterns in residuals over time is to be expected and questions the use of e.g. qq-plots as an additional diagnostic tool to assess distributional assumptions. To obtain residuals which follow the assumptions about the data in the observation models (e.g. serially uncorrelated) single joint sample residuals are extracted (ICES, 2017). In short these are obtained by sampling predicted values from the conditional distribution of values given the observations. This sample corresponds to a sample from the joint distribution of latent variables and observations. A third approach could have been to extract the one step ahead observation residuals which are standard for diagnostics for regular state-space models (*cf* Harvey 1990). This is not done here.

The negative residuals tracing the 1983 year class for catch-at-age represents low fishing mortalities examining the type 1 residuals (Figure 4.5.1.4). This effect is less pronounced considering the type 2 residuals. The type 2 residuals are qualitatively comparable with the type 1 residuals but generally display more mixed residuals as predicted by the theory. Otherwise the residuals for catch-at-age appears fairly mixed apart for some serial correlation for age 2 and 3 (which are very low), and some negative residuals for the plus group the most recent years. The residuals for Fleet 1 in year 1994, 1999, 2006 for young and old ages are all of the same signs and may appear as year effects. Also note that the residuals for Fleet 1 for ages 12+ from 2015 are all positive (Figure 4.5.1.4) which shows that the abundance indices from Fleet 1 displays a larger stock size over these ages and years compared to the assessment using all input data. Some serial correlation for residuals for ages 3 and 4 in Fleet 1 can also be detected, but is down weighted as these is found to be uncertain. Serial correlation in residuals for age 2 in Fleet 4 can also be detected indicating trends over time in mismatch between estimates and observations of abundance-at-age 2. Residuals for Fleet 5 appears adequate compared to previous years although some serial correlations can be detected also here.

The residuals for small values are bigger than residuals for the larger values since smaller values in general have higher variances than larger values (Tables 4.4.8.1–4.4.8.4; Figure 4.5.1.5). The qq-plots for the standardized residuals show that the distributional assumptions on the observation errors are adequate, except for the smallest and largest values of catch-at-age and indices from Fleet 1. As qq-plots for residuals of type 1 may be questioned (see above) it is noted that qq-plots for residuals of type 2 is more relevant and generally shows a significantly better fit based on a visual inspection compared to using type 1.

The marginal likelihood and the components for each data source (see Aanes 2016b for details) are profiled over a range of the common scaling factor h for all input data (Figure 4.5.1.6). It is apparent that the optimum of the marginal likelihood is clearly defined. The catch component is decreasing with decreasing values of h indicating that the model puts more weight on the catch component than indicated by the comparison of sampling errors for all input data. This is in line with the findings in Aanes (2016a and 2016b) who showed that these types of models tend to put too much weight on the catch data if the weighting is not constrained. However, the likelihood component for the catch is overruled by the information in Fleets 1, 4 and 5 such that the optimum for the marginal likelihood is clearly defined. The point estimates of SSB and F is insensitive to different values of h.

The retrospective runs for this model shows estimates within the estimated levels of precision (Figure 4.5.1.7), and has a reasonably low Mohn's rho value of ~0.04 (Mohn, 1999; Brooks and Legault, 2016). Note that the retrospective patterns are remarkably stable.

Figure 4.5.1.8 illustrates the conflict in data and increased uncertainty in estimates for the most recent years. The spawning-stock biomass shown for each survey index is calculated using the stock weights at age and proportion mature at age, with the abundance indices are scaled to the absolute abundance by the estimated catchabilities. A fairly good temporal match between the model estimate of SSB and the survey SSBs is seen, except for the years 2015 for Fleet 1, which displays a significantly faster reduction in the stock compared to Fleet 5 which shows a flatter trend in the same years. Both Fleet 1 and Fleet 5 indicate an increase in SSB from 2007 to 2009, then a decrease in 2020 before an increase in 2021. It is worth noting that, although the point estimate of SSB based on Fleet 1 appears very much higher than Fleet 5 in 2015, the uncertainty in the estimates are very high, such that the respective estimates do not appear as significantly different. However, the effect on the final assessment is to lift the point estimate of SSB and increase the uncertainty which is in accordance with the data used (Figure 4.5.1.9).

The final 2021 assessment results are shown in Figure 4.5.1.9. The estimate of fishing mortality for 2019 and 2020 is rather high, as a response to the high catch in both years with a point estimate

of ~0.19. In 2018 the fishing mortality is estimated to be lower than in 2017 and 2019 (F=0.13). The spawning stock shows a declining trend since 2009 but an increase in 2021, and the 95% confidence interval of the stock level in 2021 ranges from ~3.060 to ~4.470 million tonnes with a point estimate of 3.765 which is above B_{mp} = 3.184 million tonnes, such that the probability of the stock being above B_{lim} = 2.5 million tonnes is high. Note the rather large uncertainty in the absolute levels since the peak in 2009 with the further increase in the most recent years. This high uncertainty is a result of the conflicting signals in data concerning the degree of decrease in the stock over this period.

The final results of the assessment are also presented in Tables 4.5.1.2 (stock in numbers), 4.5.1.3 (fishing mortality) and Table 4.5.1.4 is the summary table of the assessment.

4.5.2 **Exploratory assessments**

4.5.2.1 TASACS

TASACS was run according to the benchmark in 2008 using the VPA population model in the TASACS toolbox with the same model options as the benchmark (see Stock Annex). The information used in the TASACS run is catch data and survey data from eight surveys. The analysis was restricted to the years 1988–2021. The model was run with catch data from 1988 to 2020, and projected forwards through 2021 assuming Fs in 2021 equal to those in 2020, to include survey data from 2021. The larval survey (SSB fleet) was discontinued in 2017 and no new information is therefore available from this survey. Additionally, no new index was provided for fleet 7 in 2019 (0-group from autumn survey in the Barents Sea) since this index was not updated by the survey group. This time-series (0-group) is currently being re-calculated.

Residuals of the tuning series are shown in Figure 4.5.2.1.1. Particularly survey 8 (larval survey) seems to have a poor fit. This is seen as a block of positive residuals for this survey in later years. The residual plot for survey 5 (IESNS) also shows some pattern with consecutive series of negative and positive residuals indicating year-effects.

The results from TASACS are compared to those from XSAM and TISVPA in Figure 4.5.2.1.2. The time-series of SSB show similar trends for XSAM and TASACS, although SSB in recent years are higher in TASACS due to an upward revision in the 2021 TASACS assessment. For most of the years, the estimates from TASACS are within the confidence limits estimated by XSAM except for the assessment year 2021 where the SSB from TASACS is slightly above. The SSB on 1 January 2021 is estimated by TASACS to be 4.56 million tonnes.

4.5.2.2 TISVPA

The TISVPA model was applied using the catch-at-age data with age range from 0 to 15+ and data from three surveys (Surveys 1, 4 and 5). No data points were down-weighted. The two-parametric selection pattern used in the model in order to accommodate generation-dependent processes in entering the fishery revealed obvious peculiarities in the interaction between the stock and the fishery.

The results show the rise in SSB in 2021 to 5.1 million tonnes due to very abundant 2016 year class (see WD07) which this year at age 5 is better reveals in the catches than in younger ages.

The results from TISVPA are compared to those from XSAM and TASACS in Figure 4.5.2.1.2.

4.6 NSSH reference points

ICES last reviewed the reference points of Norwegian spring-spawning herring in April 2018 during WKNSSHREF (ICES, 2018a). ICES concluded that B_{lim} should remain unchanged at 2.5 million tonnes and MSY $B_{trigger} = B_{pa}$ was estimated at 3.184 million tonnes. F_{MSY} was estimated at the reference point workshop, but during the subsequent Management Strategy Evaluation WKNSSHMSE (ICES, 2018b) the fishing mortality reference points were revisited as issues were found with numerical instability and settings during the reference point workshop. F_{MSY} was reestimated to be 0.157.

4.6.1 PA reference points

The PA reference points for the stock were last estimated by WKNSSHREF and WKNSSHMSE in 2018. The WKNSSHREF group concluded that B_{lim} should be kept at 2.5 million tonnes and B_{pa} was estimated at 3.184 million tonnes. WKNSSHMSE estimated F_{pa} = 0.227. However, following recent ICES guidelines F_{pa} is now based on Fp05 which was estimated at 0.157 by WKNSSHMSE in 2018.

4.6.2 MSY reference points

The MSY reference points were evaluated by WKNSSHREF and WKNSSHMSE in 2018. In the ICES MSY framework B_{Pa} is proposed/adopted as the default trigger biomass $B_{trigger}$ and was estimated by WKNSSHREF at 3.184 million tonnes. FMSY was estimated by WKNSSHMSE at 0.157.

4.6.3 Management reference points

In the current management strategy, which was agreed upon in October 2018, the Coastal States have agreed a target reference point defined at F_{target} = 0.14 when the stock is above B_{pa} . If the SSB is below B_{pa} , a linear reduction in the fishing mortality rate will be applied from 0.14 at B_{pa} to 0.05 at B_{lim} .

4.7 State of the stock

The SSB on 1 January 2021 is estimated by XSAM to be 3.765 million tonnes which is above B_{pa} (3.184 million t). The spawning stock has been declining since 2009 but increased in 2021. The SSB time-series from the 2021 assessment is consistent with the SSB time-series from the 2020 assessment. In the last 20 years, several large year classes have been produced (1998, 1999, 2002, and 2004). The year classes 2005–2015 are estimated to be average or small, while the 2016 year class is estimated to be above average in the 2021 assessment. Fishing mortality in 2020 is estimated to be 0.188 which is above the management strategy F (0.140) that was used to give advice for 2020. A new management strategy was implemented for the 2019 advisory year.

4.8 NSSH catch predictions for 2021

4.8.1 Input data for the forecast

Forecasting was conducted using XSAM according to the method described in the Stock Annex and by Aanes (2016c). WGWIDE 2016 decided to use the point estimates from this forecast as basis for the advice. In short, the forecast is made by applying the point estimates of the stock

status as input to set TAC, then based on the TAC a stochastic forecast was performed to determine levels of precision in the forecast. Table 4.8.1.1 lists the point estimates of the starting values for the forecast. The input stock numbers-at-age 2 and older were taken from the final assessment. The catch weight-at-age, used in the forecast, is the average of the observed catch weights over the last 3 years (2018–2020).

For the weight-at-age in the stock, the values for 2021 were obtained from the commercial fisheries in the wintering areas in January. For the years 2022 and 2023 the average of the last 3 years (2019–2021) was used.

Standard values for natural mortality were used. Maturity-at-age was based on the information presented in Section 4.4.5.

The exploitation pattern used in the forecast is taken from the predictions made by the model (see Aanes 2016c for details). The resultant mean annual exploitation pattern is shown in Figure 4.8.1.1 and displays a shift towards older fish in the recent years and further in the prediction. Prediction of recruitment-at-age 2 is obtained by the model with a mean that in practice represents the long-term (1988–2021) estimated mean recruitment (back-transformed mean at log scale) and variance the corresponding recruitment variability over the period. Forecasted values of recruits are highly imprecise but have little influence on the short-term forecast of SSB as the herring starts to mature at age 4. Note that the 2016 year class is regarded as large; hence, the maturity is set to be lower than for smaller year classes. This results in the contribution of the 2016 year class to the SSB being delayed.

The average fishing mortality is defined as the average over the ages 5 to 12+, weighted over the population numbers in the relevant year

$$\bar{F}_y = \sum_{a=5}^{12} N_{a,y} F_{a,y} / \sum_{a=5}^{12} N_{a,y}$$

where $F_{a,y}$ and $N_{a,y}$ are fishing mortalities and numbers by age and year. This procedure is in accordance with that used in previous years for this stock although the age range was shifted from 5–11 to 5–12+ from 2018.

There was no agreement between the fishing parties on the sharing of the TAC for 2021. Therefore, to obtain an estimate of the total catch to be used as input for the catch-constraint projections for 2021, the sum of the unilateral quotas was used. In total, the expected outtake from the stock in 2021 amounts to 881 097 tonnes. F in 2021 is estimated by XSAM based on this catch.

4.8.2 Results of the forecast

The Management Options Table with the results of the forecast is presented in Table 4.8.2.1. Assuming a total catch 881 097 tonnes is taken in 2021, it is expected that the SSB will increase from 3.765 million tonnes on 1 January in 2021 to 3.92 million tonnes in 2022. The weighted F over ages 5–12+ is 0.174. The model estimates the catch in 2022 to be dominated by three age groups, age 6 (44%), age 9 (13%), and age 12+ (13%).

4.9 Comparison with previous assessment

A comparison between the assessments 2008–2021 is shown in Figure 4.9.1. In the years 2008–2015 the assessments were made with TASACS, whereas since 2016 XSAM has been applied, as accepted by WKPELA 2016. With the change of the assessment tool in 2016 the age of the

L

recruitment changed from 0 to 2 and the age span in the reference F changed from 5–14 to 5–11. In WKNSSHREF (ICES, 2018a) this was further changed to 5–12+.

The table below shows the SSB (thousand tonnes) on 1 January in 2020 and weighted F in 2019 as estimated in 2020 and 2021.

	ICES 2020	WG 2021	%difference
SSB (2020)	3315	3375	1.8%
Weighted F (2019)	0.191	0.186	-2.6%

4.10 Management plans and evaluations

The current management strategy for the Norwegian spring-spawning herring fishery was agreed by the Coastal States in October 2018.

The implemented long-term management strategy of Norwegian spring-spawning herring is consistent with the precautionary approach and the MSY approach (WKNSSHREF, ICES, 2018a; WKNSSHMSE, ICES, 2018b) and aims at ensuring harvest rates within safe biological limits. The management strategy in use contains the following elements:

As a priority, the long-term management strategy shall ensure with high probability that the size of the spawning stock is maintained above Blim.

In the case that the spawning biomass is forecast to be above or equal to $B_{trigger}$ (= B_{pa}) on 1 January of the year for which the TAC (i.e. the TAC agreed by Coastal States) is to be set, the TAC shall be fixed to a fishing mortality of F_{mgt} = 0.14.

If F_{mgt} (0.14) would lead to a TAC, that deviates by more than 20% below or 25% above the TAC of the preceding year, the Parties shall fix a TAC that is respectively no more than 20% less or 25% more than the TAC of the preceding year. The TAC constraint shall not apply if the spawning biomass at 1 January in the year for which the TAC is to be set is less than $B_{trigger}$.

If SSB is forecast to be lower than $B_{trigger}$ but above B_{lim} on the 1 January of the TAC-year, TAC is to be set using F, which decreases linearly from F_{mgt} to F = 0.05 over the biomass range from $B_{trigger}$ to B_{lim} .

The Coastal States Parties may transfer 10% of quotas between neighbouring years, except when SSB is less than B_{lim}; those years the management plan does not allow fishing of next year's quota.

The Coastal States Parties, on the basis of ICES advice, shall review the long-term management strategy at intervals not exceeding five years. The first such review shall take place no later than 2023.

A brief history of management strategies is in the stock annex. In general, the stock has been managed in compliance with the management plan. There has, however, been no agreement on sharing of the TAC since 2013, resulting in the total catch being higher than the advised catch.

4.11 Management considerations

Perception of the stock has not changed since last year's assessment (estimated SSB in 2020 is 1.8% higher in this year's assessment).

Historically, the size of the stock has shown large variations and dependence on the irregular occurrence of very strong year classes. Between 1998 and 2004 the stock produced several strong year classes which lead to an increase in SSB until 2009. Since then, SSB has declined due to

absence of strong year classes in 2005–2015. The 2016 year class is however, estimated to be well above average in the 2021 assessment and resulted in an increase in SSB from 2020 to 2021. SSB is, however, predicted to decrease in 2023 even if the management strategy (F=0.14) is applied in 2022.

Between 1999 and 2018, catches were regulated through an agreed management. However, since 2013, a lack of agreement by the Coastal States on their share in the TAC has led to unilaterally set quotas which together are higher than the TAC indicated by the management strategy resulting in steeper reduction in the SSB than otherwise.

A new management strategy was implemented for the advisory year 2019.

4.12 Ecosystem considerations

NSS herring juveniles and adults are an important part of the ecosystems in the Barents Sea, along the Norwegian coast, in the Norwegian Sea and in adjacent waters. This refers both to predation on zooplankton by herring and herring being a food resource to higher trophic levels (e.g. cod, saithe, seabirds, and marine mammals). The predation intensity of and on herring have seasonal, spatial and temporal variation as a consequence of variation in migration pattern, prey density, stock size, size of year classes and stock sizes of competing stocks for resources and predators. Recent features of some of these ecosystem factors of relevance for the stock are summarized below.

- Following a maximum in zooplankton biomass in May during the early 2000s the biomass declined with a minimum in 2006. From 2010, the trend turned to an increase and the last five years the zooplankton biomass has fluctuated around the long-term mean (ICES, 2021a). Interestingly, all the areas, excluding east of Iceland and on few occasions Jan Mayen, show co-varying changes in zooplankton biomass.
- The Atlantic water mass in the Norwegian Sea was warmer and saltier over the period 2000–2016 than the long-term mean (ICES, 2021b). However, during the period, 2017–2020 the temperature remained relatively warm while the salinity had a marked decrease. Two different mechanisms can explain this, increased fraction of subpolar water (fresh and cold) and low heat loss to the atmosphere in the Norwegian Atlantic flow. Under the assumption that circulation patterns do not change, this situation with anomalously fresh Atlantic water in the Norwegian Sea can be expected to continue and even increase in the coming years. The relative minor cooling is due to the anomalous small local heat loss to the atmosphere during the same period.
- In general, the herring stock has had a more westerly feeding distribution (ICES, 2021a; 2021c) in the recent years than what was previously observed. The large 2016 year class included a more northeastern distribution than the older age classes in the stock in 2020, but in 2021 it was also widely distributed into the southwestern feeding area, although not as far west as the older herring. The more westerly distribution might be due to either better feeding opportunities there or a response to feeding competition with mackerel but the consequence is a less spatial overlap of herring and mackerel in Norwegian Sea and adjoining waters since around 2014 (ICES, 2021c).
- Where herring and mackerel overlap spatially they compete for food to some extent (Bachiller *et al.*, 2016, 2018; Debes *et al.*, 2012; Langøy *et al.*, 2012; Óskarsson *et al.*, 2016). There are studies showing mackerel being more effective feeder, which might indicate that the herring is forced to the southwestern and northeastern fringe of Norwegian Sea (ICES, 2021c). Alternatively, the higher zooplankton biomass in the southwest could also attract the herring in to this location, since zooplankton biomass is much lower in the northeast (ICES, 2020b).

- Results of stomach analyses of mackerel on the Norwegian coastal shelf (between about 66°N and 69°N) suggest that mackerel fed opportunistically on herring larvae, and that predation pressure therefore largely depends on the degree of overlap in time and space (Skaret *et al.*, 2015). Sampling in June 2017 and 2018, specifically studying mackerel predation on herring larvae, found significant numbers of herring larvae in mackerel stomachs in the area just south of Lofoten (Allan *et al.*, 2021).
- The 2016 year class of herring was the strongest since the 2004 year class in the Norwegian Sea as 4 year old based on the IESNS survey 2020 but had decreased somewhat as 5 year olds in the IESNS survey 2021 (Table 4.4.7.3).
- In winter 2017/2018, the overwintering grounds shifted northward along the coast of Norway with older individuals occurring in oceanic areas. Such changes previously coincided with large year classes entering the spawning stock, however this recent change did not. Also, the onset of the overwintering period is later in the year since the end of the 2000s.

4.13 Changes in fishing patterns

The fishery for Norwegian spring-spawning herring has previously (before 2013) been described as progressing clockwise in the Nordic Seas during the year. However, the last 5–8 years the annual progression of the fishery has changed into a pendular behaviour, starting in winter along the Norwegian coast, moving gradually to the west towards Iceland in summer, and then east again into the central Norwegian Sea in the last quarter of the year.

The fishery reached its lowest catches since the mid-nineties in 2015, after which the catches increased again and have in the last four years been around 600 000–800 000 tonnes (Table 4.4.1.1). It is mainly the fishery in the fourth quarter that has increased since 2015, with up to 2/3 of the catches taken in this quarter. This fishery is now mainly in the central Norwegian Sea, north of the Faroes and east of Iceland, whereas before 2015 it used to be stretched out towards the coast of Norway and north towards the Bear Island. Changes in migration have also resulted in late arrival at the Norwegian coast for this part of the stock (mostly older fish) during winter in recent years. In winter 2020/2021 the return migration was very late for parts of the adult migrating from the southwestern areas, as Faroese vessels fished on schools of prespawning herring in southern part of the international waters in mid-January 2021 and later in January Norwegian vessels targeted this herring further northeast. The Norwegian coastal fleet (smaller vessel that cannot go that far offshore) have therefore not been able to access this herring during winter fishery and targeted younger fish (mostly of the 2013 and in later years the 2016 year class) which overwintered in Norwegian fjords and close to the Norwegian coast in the north.

4.14 Recommendations

For some years there have been issues with age reading of herring. Last year, WGWIDE recommended to organize a scale/otolith exchange and workshop. This work appears to be in progress in WGIPS, WGBIOP and nationally at the institutes.

4.15 References

Aanes, S. 2016a. A statistical model for estimating fish stock parameters accounting for errors in data: Applications to data for Norwegian Spring-spawning herring. WD4 in ICES. 2016. Report of the Benchmark Workshop on Pelagic stocks (WKPELA), 29 February–4 March 2016, ICES Headquarters, Copenhagen, Denmark. ICES CM 2016/ACOM:34. 106pp.

I

L

- Aanes, S. 2016b. Diagnostics of models fits by XSAM to herring data. WD12 in ICES. 2016. Report of the Benchmark Workshop on Pelagic stocks (WKPELA), 29 February–4 March 2016, ICES Headquarters, Copenhagen, Denmark. ICES CM 2016/ACOM:34. 106pp.
- Aanes, S. 2016c. Forecasting stock parameters of Norwegian spring spawning herring using XSAM. WD at WGWIDE in 2016.
- Allan, B.J.M., Ray, J.L., Tiedemann, M., Komyakova, V., Vikebø, F., Skaar, K.S. Stiasny, M.H., Folkvord, A., Nash, R.D.M., Stenevik, E.K. and Kjesbu, O.S. 2021. Quantitative molecular detection of larval Atlantic herring (Clupea harengus) in stomach contents of Atlantic mackerel (Scomber scombrus) marks regions of predation pressure. Scientific Reports, 11(1): 5095. https://doi.org/10.1038/s41598-021-84545-7
- Bachiller E., Skaret G., Nøttestad L., and Slotte A. 2016. Feeding Ecology of Northeast Atlantic Mackerel, Norwegian Spring-Spawning Herring and Blue Whiting in the Norwegian Sea. PlosONE 11(2): e0149238. doi:10.1371/journal.pone.0149238.
- Bachiller E., Utne K. R., Jansen T., and Huse G. 2018. Bioenergetics modeling of the annual consumption of zooplankton by pelagic fish feeding in the Northeast Atlantic. PlosONE 13(1): e0190345. https://doi.org/10.1371/journal.pone.0190345
- Brooks, E.N. and Legault, C.M. 2016. Retrospective forecasting evaluating performance of stock projections in New England groundfish stocks. Canadian Journal of Fisheries and Aquatic Sciences 73: 935– 950.
- Debes, H., Homrum, E., Jacobsen, J. A., Hátún, H., and Danielsen, J. 2012. The feeding ecology of pelagic fish in the southwestern Norwegian Sea – Inter species food competition between herring (Clupea harengus) and mackerel (Scomber scombrus). ICES CM 2012/M:07. 19 pp.
- Engelhard, G.H., Dieckmann, U and Godø, O.R. 2003. Age at maturation predicted from routine scale measurements in Norwegian spring-spawning herring (Clupea harengus) using discriminant and neural network analyses. ICES Journal of Marine Science, 60: 304–313.
- Engelhard, G.H. and Heino, M. 2004. Maturity changes in Norwegian spring-spawning herring before, during, and after a major population collapse. Fisheries Research, 66: 299-310.
- Harvey, A.C. 1990. Forecasting, structural time-series models and the Kalman Filter. Cambridge University Press. ISBN 0 521 40573 4.
- Hirst, D., Storvik, G., Rognebakke, H., Aldrin, M., Aanes, S., and Volstad, J.H. 2012. A Bayesian modelling framework for the estimation of catch-at-age of commercially harvested fish species. Can. J. Fish. Aquat. Sci. 69(12): 2064–2076.
- ICES 1998. Northern Pelagic and Blue Whiting Fisheries Working Group, ICES CM 1998/ACFM:18
- ICES. 2008. Report of the Working Group on Widely Distributed Stocks (WGWIDE). 2-11 September 2008, ICES Headquarters Copenhagen. ICES CM 2008/ACOM:13: 691pp.
- ICES. 2010a. Report of the Workshop on estimation of maturity ogive in Norwegian spring-spawning herring (WKHERMAT), 1–3 March 2010, Bergen, Norway. ICES CM 2010/ACOM:51. 47 pp
- ICES. 2010b. Report of the Working Group on Widely Distributed Stocks (WGWIDE), 28 August –3 September 2010, Vigo, Spain. ICES CM 2010/ACOM:12.
- ICES. 2016, Report of the benchmark workshop on pelagic stocks (WKPELA). 29 February 4 March 2016, ICES Headquarters Copenhagen. ICES CM 2016/ACOM:34.
- ICES. 2017. Report of the Working Group on Inter-benchmark Protocol on Northeast Arctic Cod (2017), 4– 6 April 2017, Copenhagen, Denmark. ICES CM 2017/ACOM:29. 236 pp.
- ICES. 2018a. Report of the Workshop on the determination of reference points for Norwegian Spring Spawning Herring (WKNSSHREF), 10–11 April 2018, ICES Headquarters, Copenhagen, Denmark. ICES CM 2018/ACOM:45. 83 pp.
- ICES. 2018b. Report of the Workshop on a long-term management strategy for Norwegian Spring-spawning herring (WKNSSHMSE), 26-27 August 2018, Torshavn, Faroe Islands. ICES CM 2018/ACOM: 53. 108 pp.

- ICES. 2021a. International ecosystem survey in the Nordic Sea (IESNS) in May to June 2021. WD14 to Working Group on International Pelagic Surveys (WGIPS) and Working Group on Widely distributed Stocks (WGWIDE) WebEx-meeting, 25.-31. August 2021. 30 pp.
- ICES. 2021b. Working Group on the Integrated Assessments of the Norwegian Sea (WGINOR; outputs from 2020 meeting). ICES Scientific Reports. 3:35. 114 pp. https://doi.org/10.17895/ices.pub.8021
- ICES. 2021c. Cruise report from the International Ecosystem Summer Survey in the Nordic Seas (IESSNS), 1 July – 4 August 2021. WD09 to ICES Working Group on Widely Distributed Stocks (WGWIDE), WebEx-meeting 25-31 August 2021. 60 pp.
- Johnsen, E., Totland, A., Skålevik, Å., Holmin, A.J., Dingsør, G.E., Fuglebakk, E., Handegard, N.O. 2019. StoX: An open source software for marine survey analyses. Methods Ecol Evol. 2019, 10:1523–1528.
- Langøy, H., Nøttestad, L., Skaret, G., Broms, C. and Fernö, A. 2012. Overlap in distribution and diets of Atlantic mackerel (Scomber scombrus), Norwegian spring- spawning herring (Clupea harengus) and blue whiting (Micromesistius poutassou) in the Norwegian Sea during late summer. Marine biology research, 8: 442–460.
- Mohn, R. 1999. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data. ICES Journal of Marine Science 56: 473–488.
- Óskarsson, G.J., A. Gudmundsdottir, S. Sveinbjörnsson and Þ. Sigurðsson 2016. Feeding ecology of mackerel and dietary overlap with herring in Icelandic Waters. Marine Biology Research, 12: 16-29.
- Salthaug, A. and Aanes, S. 2015. Estimating the Norwegian catch-at-age of blue whiting, mackerel, North Sea herring and Norwegian spring-spawning herring with the ECA model. Working document in the Report of the working group on widely distributed stocks (WGWIDE). ICES CM 2015 / ACOM:15.
- Skaret G., Bachiller E., Langøy H., Stenevik, E.K. 2015. Mackerel predation on herring larvae during summer feeding in the Norwegian Sea. ICES Journal of Marine Science 72(8), 2313-2321. doi:10.1093/icesjms/fsv087

I

4.16 Tables and figures

Table 4.4.1.1 Total landings (ICES estimate) of Norwegian spring-spawning herring (tonnes) since 1972. Data provided by Working Group members.

YEAR	NORWAY	USSR/RU SSIA	DEN- MARK	FAROES	ICELAND	IRELAND	NETHER- LANDS	GREEN- LAND	UK	GER- MANY	FRANCE	POLAND	SWEDEN	TOTAL
1972	13161	-	-	-	-	-	-	-	-	-	-	-	-	13161
1973	7017	-	-	-	-	-	-	-	-	-	-	-	-	7017
1974	7619	-	-	-	-	-	-	-	-	-	-	-	-	7619
1975	13713	-	-	-	-	-	-	-	-	-	-	-	-	13713
1976	10436	-	-	-	-	-	-	-	-	-	-	-	-	10436
1977	22706	-	-	-	-	-	-	-	-	-	-	-	-	22706
1978	19824	-	-	-	-	-	-	-	-	-	-	-	-	19824
1979	12864	-	-	-	-	-	-	-	-	-	-	-	-	12864
1980	18577	-	-	-	-	-	-	-	-	-	-	-	-	18577
1981	13736	-	-	-	-	-	-	-	-	-	-	-	-	13736
1982	16655	-	-	-	-	-	-	-	-	-	-	-	-	16655
1983	23054	-	-	-	-	-	-	-	-	-	-	-	-	23054
1984	53532	-	-	-	-	-	-	-	-	-	-	-	-	53532
1985	167272	2600	-	-	-	-	-	-	-	-	-	-	-	169872
1986	199256	26000	-	-	-	-	-	-	-	-	-	-	-	225256

YEAR	NORWAY	USSR/RU SSIA	DEN- MARK	FAROES	ICELAND	IRELAND	NETHER- LANDS	GREEN- LAND	UK	GER- MANY	FRANCE	POLAND	SWEDEN	TOTAL
1987	108417	18889	-	-	-	-	-	-	-	-	-	-	-	127306
1988	115076	20225	-	-	-	-	-	-	-	-	-	-	-	135301
1989	88707	15123	-	-	-	-	-	-	-	-	-	-	-	103830
1990	74604	11807	-	-	-	-	-	-	-	-	-	-	-	86411
1991	73683	11000	-	-	-	-	-	-	-	-	-	-	-	84683
1992	91111	13337	-	-	-	-	-	-	-	-	-	-	-	104448
1993	199771	32645	-	-	-	-	-	-	-	-	-	-	-	232457
1994	380771	74400	-	2911	21146	-	-	-	-	-	-	-	-	479228
1995	529838	101987	30577	57084	174109	-	7969	2500	881	556	-	-	-	905501
1996	699161	119290	60681	52788	164957	19541	19664	-	46131	11978	-	-	22424	1220283
1997	860963	168900	44292	59987	220154	11179	8694	-	25149	6190	1500	-	19499	1426507
1998	743925	124049	35519	68136	197789	2437	12827	-	15971	7003	605	-	14863	1223131
1999	740640	157328	37010	55527	203381	2412	5871	-	19207	-	-	-	14057	1235433
2000	713500	163261	34968	68625	186035	8939	-	-	14096	3298	-	-	14749	1207201
2001	495036	109054	24038	34170	77693	6070	6439	-	12230	1588	-	-	9818	766136
2002	487233	113763	18998	32302	127197	1699	9392	-	3482	3017	-	1226	9486	807795
2003*	477573	122846	14144	27943	117910	1400	8678	-	9214	3371	-	-	6431	789510
2004	477076	115876	23111	42771	102787	11	17369	-	1869	4810	400	-	7986	794066

YEAR	NORWAY	USSR/RU SSIA	DEN- MARK	FAROES	ICELAND	IRELAND	NETHER- LANDS	GREEN- LAND	UK	GER- MANY	FRANCE	POLAND	SWEDEN	TOTAL
2005	580804	132099	28368	65071	156467	-	21517	-	-	17676	0	561	680	1003243
2006	567237	120836	18449	63137	157474	4693	11625	-	12523	9958	80	-	2946	968958
2007	779089	162434	22911	64251	173621	6411	29764	4897	13244	6038	0	4333	0	1266993
2008	961603	193119	31128	74261	217602	7903	28155	3810	19737	8338	0	0	0	1545656
2009	1016675	210105	32320	85098	265479	10014	24021	3730	25477	14452	0	0	0	1687371
2010	871113	199472	26792	80281	205864	8061	26695	3453	24151	11133	0	0	0	1457015
2011	572641	144428	26740	53271	151074	5727	8348	3426	14045	13296	0	0	0	992997
2012	491005	118595	21754	36190	120956	4813	6237	1490	12310	11945	0	0	705	826000
2013	359458	78521	17160	105038	90729	3815	5626	11788	8342	4244	0	0	23	684743
2014	263253	60292	12513	38529	58828	706	9175	13108	4233	669	0	0	0	461306
2015	176321	45853	9105	33031	42625	1400	5255	12434	55	2660	0	0	0	328740
2016	197501	50455	10384	44727	50418	2048	3519	17508	4031	2582	0	0	0	383174
2017	389383	91118	19037	98170	90400	3495	6679	12569	4358	5201	0	1	1155	721566
2018	332028	64185	17052	82062	83393	2428	4290	2465	2582	1989	0	0	425	592899
2019	430507	84364	21207	113945	108045	2775	5111	3190	1801	4188	0	1327	705	777165
2020	409436	74936	16523	103029	98173	2704	5060	3546	143	2969	0	1352	3065	720937

*In 2003 the Norwegian catches were raised of 39433 to account for changes in percentages of water content.

YEAR TOTAL CATCH % CATCH COVERED BY SAM-**NO. SAMPLES NO. MEASURED** NO. AGED PLING PROGRAMME 992.997 825.999 684.743 461.306 328.739 383.174

Table 4.4.1.2 Norwegian spring-spawning herring. Sampling coverage by year.

YEAR	TOTAL CATCH	% CATCH COVERED BY SAM- PLING PROGRAMME	NO. SAMPLES	NO. MEASURED	NO. AGED
2017	721566	95	335	31755	7241
2018	592899	97	253	22106	6047
2019	777165	97	361	29856	7421
2020	720937	98	232	34232	6742

Table 4.4.1.3 Norwegian spring-spawning herring. Sampling coverage by country in 2020.

COUNTRY	OFFICIAL CATCH	% CATCH COVERED BY SAM- PLING PROGRAMME	NO. SAMPLES	NO. MEASURED	NO. AGED
Denmark	16523	100	13	1202	394
Faroe Islands	103029	100	14	791	715
Germany	2969	99	8	502	279
Greenland	3546	0	0	0	0
Iceland	98173	100	68	1880	1554
Ireland	2704	94	2	191	120
The Netherlands	5060	0	0	0	0
Norway	409436	100	103	2537	2537
Poland	1352	0	0	0	0
UK_Scotland	143	0	0	0	0
Sweden	3065	0	0	0	0

COUNTRY	OFFICIAL CATCH	% CATCH COVERED BY SAM- PLING PROGRAMME	NO. SAMPLES	NO. MEASURED	NO. AGED
Russia	74936	99	24	27129	1143
Total for Stock	720937	98	232	34232	6742

Table 4.4.1.4 Norwegian spring-spawning herring. Sampling coverage by ICES Division in 2020.

AREA	OFFICIAL CATCH	NO SAMPLES	NO AGED	NO MEASURED	NO AGED/ 1000 TONNES	NO MEASURED/ 1000 TONNES
2.a	592854	174	5343	32776	9	55
4.a	88	0	0	0	0	0
5.a	127716	58	1399	1456	11	11
5.b	279	0	0	0	0	0
Total	720937	232	6742	34232	9	47

Table 4.4.1.5 Norwegian spring-spawning herring. Catch data provided by working group members and samples allocated to unsampled catches in SALLOC.

Line	Country	Quarter	Div.	Catch (T)	Samples allocated (line)
1	Norway	1	lla	174202.4	
2	Norway	2	lla	222.3	1
3	Norway	3	lla	8294.6	
4	Norway	4	lla	226628.8	
5	Norway	4	IVa	88.3	4
6	Iceland	3	lla	5532	

Line	Country	Quarter	Div.	Catch (T)	Samples allocated (line)
7	Iceland	4	lla	380	
8	Iceland	3	Va	62253	
9	Iceland	4	Va	30008	
10	Russia	1	lla	529	1,22
11	Russia	2	lla	80	
12	Russia	3	lla	8590	
13	Russia	4	lla	65682	
14	Russia	2	Vb	5	11
15	Russia	3	Vb	50	12
16	Faroe Islands	3	lla	16030.946	
17	Faroe Islands	4	lla	51321.124	
18	Faroe Islands	3	Va	4580.651	
19	Faroe Islands	4	Va	30874.658	
20	Faroe Islands	2	Vb	73.484	16,18
21	Faroe Islands	4	Vb	148.268	17,19
22	Denmark	1	lla	8629.27	
23	Denmark	4	lla	7894.151	
24	Netherlands	4	lla	5059.77	4,7,13,17,23,32,34

Line	Country	Quarter	Div.	Catch (T)	Samples allocated (line)
25	Greenland	3	lla	614	3,6,12,16,31
26	Greenland	4	lla	2930	4,7,13,17,23,32,34
27	Greenland	2	Vb	2	11
28	Sweden	1	lla	2865	1,22
29	Sweden	4	lla	200	4,7,13,17,23,32,34
30	Germany	2	lla	26.335	31
31	Germany	3	lla	64.492	
32	Germany	4	lla	2878.404	
33	Ireland	1	lla	163.76	1,22
34	Ireland	4	lla	2539.783	
35	Poland	4	lla	1352.055	4,7,13,17,23,32,34
36	Scotland	1	lla	143.357	1,22

Table 4.4.3.1. Norwegian spring spawning herring. Catch in numbers (thousands).

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1950	5112600	2000000	600000	276200	184800	185500	547000	628600	79500	88600	109500	86900	194500	368300	66400	344300
1951	1635500	7607700	400000	6600	383800	172400	164400	515600	602000	77100	82700	103100	107600	253500	348000	352500
1952	13721600	9149700	1232900	39300	60500	602300	136300	204500	380200	377900	79200	85700	107700	106800	186500	564400

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1953	5697200	5055000	581300	740100	46600	100900	355600	81900	110900	314100	394900	61700	91200	94100	98800	730400
1954	10675990	7071090	855400	266300	1435500	142900	236000	490300	128100	199800	440400	460700	88400	100600	133000	803200
1955	5175600	2871100	510100	93000	276400	2045100	114300	189600	274700	85300	193400	295600	203200	58700	84600	580600
1956	5363900	2023700	627100	116500	251600	314200	2555100	110000	203900	264200	130700	198300	272800	163300	63000	565100
1957	5001900	3290800	219500	23300	373300	153800	228500	1985300	72000	127300	182500	88400	121200	149300	131600	281400
1958	9666990	2798100	666400	17500	17900	110900	89300	194400	973500	70700	123000	200900	98700	77400	70900	255600
1959	17896280	198530	325500	15100	26800	25900	146600	114800	240700	1103800	88600	124300	198000	88500	77400	235900
1960	12884310	13580790	392500	121700	18200	28100	24400	96200	73300	203900	1163000	85200	129700	153500	56700	168900
1961	6207500	16075600	2884800	31200	8100	4100	15000	19400	61600	49200	136100	728100	49700	45000	63000	60100
1962	3693200	4081100	1041300	1843800	8000	3100	7200	20200	11900	59100	52600	117000	813500	44200	54700	152300
1963	4807000	2119200	2045300	760400	835800	5300	1800	3600	18300	9300	107700	92500	174100	923700	79600	185300
1964	3613000	2728300	220300	114600	399000	2045800	13700	1500	3000	24900	29300	95600	82400	153000	772800	336800
1965	2303000	3780900	2853600	89900	256200	571100	2199700	19500	14900	7400	19100	40000	100500	107800	138700	883100
1966	3926500	662800	1678000	2048700	26900	466600	1306000	2884500	37900	14300	17400	26200	11000	69100	72100	556700
1967	426800	9877100	70400	1392300	3254000	26600	421300	1132000	1720800	8900	5700	3500	8500	8900	17500	104400
1968	1783600	437000	388300	99100	1880500	1387400	14220	94000	134100	345100	2000	1100	830	2500	2600	17000
1969	561200	507100	141900	188200	800	8800	4700	700	11700	33600	36000	300	200	200	200	2400

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1970	119300	529400	33200	6300	18600	600	3300	3300	1000	13400	26200	28100	300	100	200	2000
1971	30500	42900	85100	1820	1020	1240	360	1110	1130	360	4410	6910	5450	0	20	120
1972	347100	41000	20400	35376	3476	3583	2481	694	1486	198	0	494	593	593	0	0
1973	29300	3500	1700	2389	25200	651	1506	278	178	0	0	0	0	0	180	0
1974	65900	7800	3900	100	241	24505	257	196	0	0	0	0	0	0	0	0
1975	30600	3600	1800	3268	132	910	30667	5	2	0	0	0	0	0	0	0
1976	.20100	2400	1200	23248	5436	0	0	13086	0	0	0	0	0	0	0	0
1977	43000	6200	3100	22103	23595	336	0	419	10766	0	0	0	0	0	0	0
1978	20100	2400	1200	3019	12164	20315	870	0	620	5027	0	0	0	0	0	0
1979	32600	3800	1900	6352	1866	6865	11216	326	0	0	2534	0	0	0	0	0
1980	6900	800	400	6407	5814	2278	8165	15838	441	8	0	2688	0	0	0	0
1981	8300	1100	11900	4166	4591	8596	2200	4512	8280	345	103	114	964	0	0	0
1982	22600	1100	200	13817	7892	4507	6258	1960	5075	6047	121	37	37	121	0	0
1983	127000	4680	1670	3183	21191	9521	6181	6823	1293	4598	7329	143	40	143	860	0
1984	33860	1700	2490	4483	5388	61543	18202	12638	15608	7215	16338	6478	0	0	0	1650
1985	28570	13150	207220	21500	15500	16500	130000	59000	55000	63000	10000	31000	50000	0	0	2640
1986	13810	1380	3090	539785	17594	14500	15500	105000	75000	42000	77000	19469	66000	80000	0	2470

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1987	13850	6330	35770	19776	501393	18672	3502	7058	28000	12000	9500	4500	7834	6500	7000	450
1988	15490	2790	9110	62923	25059	550367	9452	3679	5964	14583	8872	2818	3356	2682	1560	540
1989	7120	1930	25200	2890	3623	5650	324290	3469	800	679	3297	1375	679	321	260	0
1990	1020	400	15540	18633	2658	11875	10854	226280	1289	1519	2036	2415	646	179	590	480
1991	100	3370	3330	8438	2780	1410	14698	8867	218851	2499	461	87	690	103	260	540
1992	1630	150	1340	12586	33100	4980	1193	11981	5748	225677	2483	639	247	1236	0	0
1993	6570	130	7240	28408	106866	87269	8625	3648	29603	18631	410110	0	0	0	0	0
1994	430	20	8100	32500	110090	363920	164800	15580	8140	37330	35660	645410	2830	460	100	2070
1995	0	0	1130	57590	346460	622810	637840	231090	15510	15850	69750	83740	911880	4070	250	450
1996	0	0	30140	34360	713620	1571000	940580	406280	103410	5680	7370	66090	17570	836550	0	0
1997	0	0	21820	130450	270950	1795780	1993620	761210	326490	60870	20020	32400	90520	19120	370330	300
1998	0	0	82891	70323	242365	368310	1760319	1263750	381482	129971	42502	25343	3478	112604	5633	108514
1999	0	0	5029	137626	35820	134813	429433	1604959	1164263	291394	106005	14524	40040	7202	88598	63983
2000	0	0	14395	84016	560379	34933	110719	404460	1299253	1045001	216980	71589	16260	22701	23321	71811
2001	0	0	2076	102293	160678	426822	38749	95991	296460	839136	507106	73673	23722	3505	3356	22164
2002	0	0	62031	198360	643161	255516	326495	29843	93530	264675	663059	339326	52922	12437	7000	10087
2003	0	3461	4524	75243	323958	730468	175878	167776	22866	74494	217108	567253	219097	38555	8111	6192

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
2004	125	1846	43800	24299	92300	429510	714433	111022	137940	26656	52467	169196	401564	210547	28028	11883
2005	0	442	20411	447788	94206	170547	643600	930309	121856	123291	37967	65289	139331	344822	126879	15697
2006	0	1968	45438	75824	729898	82107	171370	726041	772217	88701	77115	30339	57882	133665	142240	49128
2007	0	4475	8450	224636	366983	1804495	152916	242923	728836	511664	47215	25384	15316	24488	64755	58465
2008	0	39898	123949	36630	550274	670681	2295912	199592	256132	586583	369620	29633	36025	23775	25195	63176
2009	0	3468	113424	192641	149075	1193781	914748	1929631	142931	262037	423972	238174	45519	9337	10153	70538
2010	0	75981	61673	101948	209295	189784	1064866	711951	1421939	175010	180164	340781	179039	12558	11602	49773
2011	0	126972	249809	61706	104634	234330	210165	755382	543212	642787	90515	117230	136509	45082	6628	11638
2012	0	2680	13083	211630	49999	119627	281908	263330	747839	314694	357902	53109	44982	64273	12420	3604
2013	0	1	20715	60364	276901	71287	112558	283658	242243	591912	169525	145318	24936	10614	9725	2299
2014	0	265	1441	28301	57838	257529	50424	71721	194814	147083	381317	83050	57315	12746	1809	7501
2015	0	647	3244	16139	55749	52369	152347	34046	65728	156075	103393	201141	24310	49373	3369	6397
2016	0	197	2351	45483	43416	112147	85937	164454	52267	73576	174655	96476	179051	38546	32880	8379
2017	0	618	16390	64275	305483	114976	248192	162566	289931	98836	133145	276874	107473	220368	22357	49442
2018	0	1261	22414	25638	59802	264182	150759	179628	109121	180968	85954	99061	212052	113841	136096	39249
2019	0	769	2205	148669	64237	185336	557804	146597	217346	119855	167569	133910	104730	220400	91773	121229
2020	0	1299	8252	49455	544337	70633	150932	412498	118081	156696	94975	188852	100408	96557	132619	103350

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1950	0.007	0.025	0.058	0.110	0.188	0.211	0.234	0.253	0.266	0.280	0.294	0.303	0.312	0.32	0.323	0.334
1951	0.009	0.029	0.068	0.130	0.222	0.249	0.276	0.298	0.314	0.330	0.346	0.357	0.368	0.377	0.381	0.394
1952	0.008	0.026	0.061	0.115	0.197	0.221	0.245	0.265	0.279	0.293	0.308	0.317	0.327	0.335	0.339	0.349
1953	0.008	0.027	0.063	0.120	0.205	0.230	0.255	0.275	0.290	0.305	0.320	0.330	0.34	0.347	0.351	0.363
1954	0.008	0.026	0.062	0.117	0.201	0.225	0.250	0.269	0.284	0.299	0.313	0.323	0.333	0.341	0.345	0.356
1955	0.008	0.027	0.063	0.119	0.204	0.229	0.254	0.274	0.289	0.304	0.318	0.328	0.338	0.346	0.350	0.362
1956	0.008	0.028	0.066	0.126	0.215	0.241	0.268	0.289	0.304	0.320	0.336	0.346	0.357	0.365	0.369	0.382
1957	0.008	0.028	0.066	0.127	0.216	0.243	0.269	0.290	0.306	0.322	0.338	0.348	0.359	0.367	0.371	0.384
1958	0.009	0.030	0.070	0.133	0.227	0.255	0.283	0.305	0.321	0.338	0.355	0.366	0.377	0.386	0.390	0.403
1959	0.009	0.030	0.071	0.135	0.231	0.259	0.287	0.310	0.327	0.344	0.360	0.372	0.383	0.392	0.397	0.409
1960	0.006	0.011	0.074	0.119	0.188	0.277	0.337	0.318	0.363	0.379	0.360	0.420	0.411	0.439	0.450	0.447
1961	0.006	0.010	0.045	0.087	0.159	0.276	0.322	0.372	0.363	0.393	0.407	0.397	0.422	0.447	0.465	0.452
1962	0.009	0.023	0.055	0.085	0.148	0.288	0.333	0.360	0.352	0.350	0.374	0.384	0.374	0.394	0.399	0.414
1963	0.008	0.026	0.047	0.098	0.171	0.275	0.268	0.323	0.329	0.336	0.341	0.358	0.385	0.353	0.381	0.386
1964	0.009	0.024	0.059	0.139	0.219	0.239	0.298	0.295	0.339	0.350	0.358	0.351	0.367	0.375	0.372	0.433
1965	0.009	0.016	0.048	0.089	0.217	0.234	0.262	0.331	0.360	0.367	0.386	0.395	0.393	0.404	0.401	0.431
1966	0.008	0.017	0.040	0.063	0.246	0.260	0.265	0.301	0.410	0.425	0.456	0.460	0.467	0.446	0.459	0.472

Table 4.4.4.1. Norwegian spring spawning herring. Weight at age in the catch (kg).

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1967	0.009	0.015	0.036	0.066	0.093	0.305	0.305	0.310	0.333	0.359	0.413	0.446	0.401	0.408	0.439	0.430
1968	0.010	0.027	0.049	0.075	0.108	0.158	0.375	0.383	0.364	0.382	0.441	0.410		0.517	0.491	0.485
1969	0.009	0.021	0.047	0.072		0.152	0.296		0.329	0.329	0.341					0.429
1970	0.008	0.058	0.085	0.105	0.171		0.216	0.277	0.298	0.304	0.305	0.309				0.376
1971	0.011	0.053	0.121	0.177	0.216	0.250		0.305	0.333		0.366	0.377	0.388			
1972	0.011	0.029	0.062	0.103	0.154	0.215	0.258		0.322							
1973	0.006	0.053	0.106	0.161	0.213		0.255									
1974	0.006	0.055	0.117			0.249										
1975	0.009	0.079	0.169	0.241			0.381									
1976	0.007	0.062	0.132	0.189	0.250			0.323								
1977	0.011	0.091	0.193	0.316	0.350				0.511							
1978	0.012	0.100	0.210	0.274	0.424	0.454				0.613						
1979	0.010	0.088	0.181	0.293	0.359	0.416	0.436				0.553					
1980	0.012			0.266	0.399	0.449	0.460	0.485				0.608				
1981	0.010	0.082	0.163	0.196	0.291	0.341	0.368	0.380	0.397							
1982	0.010	0.087	0.159	0.256	0.312	0.378	0.415	0.435	0.449	0.448						
1983	0.011	0.090	0.165	0.217	0.265	0.337	0.378	0.410	0.426	0.435	0.444					

Т

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1984	0.009	0.047	0.145	0.218	0.262	0.325	0.346	0.381	0.400	0.413	0.405	0.426				0.415
1985	0.009	0.022	0.022	0.214	0.277	0.295	0.338	0.360	0.381	0.397	0.409	0.417	0.435			0.435
1986	0.007	0.077	0.097	0.055	0.249	0.294	0.312	0.352	0.374	0.398	0.402	0.401	0.410	0.410		0.410
1987	0.010	0.075	0.091	0.124	0.173	0.253	0.232	0.312	0.328	0.349	0.353	0.370	0.385	0.385	0.385	
1988	0.008	0.062	0.075	0.124	0.154	0.194	0.241	0.265	0.304	0.305	0.317	0.308	0.334	0.334	0.334	
1989	0.010	0.060	0.204	0.188	0.264	0.260	0.282	0.306			0.422	0.364				
1990	0.007		0.102	0.230	0.239	0.266	0.305	0.308	0.376	0.407	0.412	0.424				
1991		0.015	0.104	0.208	0.250	0.288	0.312	0.316	0.330	0.344						
1992	0.007		0.103	0.191	0.233	0.304	0.337	0.365	0.361	0.371	0.403			0.404		
1993	0.007		0.106	0.153	0.243	0.282	0.320	0.330	0.365	0.373	0.379					
1994			0.102	0.194	0.239	0.280	0.317	0.328	0.356	0.372	0.390	0.379	0.399	0.403		
1995			0.102	0.153	0.192	0.234	0.283	0.328	0.349	0.356	0.374	0.366	0.393	0.387		
1996			0.136	0.136	0.168	0.206	0.262	0.309	0.337	0.366	0.360	0.361	0.367	0.379		
1997			0.089	0.167	0.184	0.207	0.232	0.277	0.305	0.331	0.328	0.344	0.343	0.397	0.357	
1998			0.111	0.150	0.216	0.221	0.249	0.277	0.316	0.338	0.374	0.372	0.366	0.396	0.377	0.406
1999			0.096	0.173	0.228	0.262	0.274	0.292	0.307	0.335	0.362	0.371	0.399	0.396	0.400	0.404
2000			0.124	0.175	0.222	0.242	0.289	0.303	0.310	0.328	0.349	0.383	0.411	0.410	0.419	0.409

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
2001			0.105	0.166	0.214	0.252	0.268	0.305	0.308	0.322	0.337	0.363	0.353	0.378	0.400	0.427
2002			0.056	0.128	0.198	0.255	0.281	0.303	0.322	0.323	0.334	0.345	0.369	0.407	0.410	0.435
2003		0.062	0.068	0.169	0.218	0.257	0.288	0.316	0.323	0.348	0.354	0.351	0.363	0.372	0.376	0.429
2004	0.022	0.066	0.143	0.18	0.227	0.26	0.29	0.323	0.355	0.375	0.383	0.399	0.395	0.405	0.429	0.439
2005		0.092	0.106	0.181	0.235	0.266	0.290	0.315	0.344	0.367	0.384	0.372	0.384	0.398	0.402	0.413
2006		0.055	0.102	0.171	0.238	0.268	0.292	0.311	0.330	0.365	0.374	0.376	0.388	0.396	0.398	0.407
2007	0.000	0.074	0.137	0.162	0.228	0.271	0.316	0.332	0.342	0.358	0.361	0.381	0.390	0.400	0.405	0.399
2008	0.000	0.026	0.106	0.145	0.209	0.254	0.296	0.318	0.341	0.353	0.363	0.367	0.395	0.396	0.386	0.413
2009		0.040	0.156	0.184	0.220	0.251	0.291	0.311	0.338	0.347	0.363	0.375	0.382	0.375	0.375	0.387
2010		0.059	0.107	0.177	0.218	0.261	0.279	0.311	0.325	0.343	0.362	0.370	0.388	0.391	0.376	0.441
2011		0.011	0.098	0.200	0.257	0.273	0.300	0.316	0.340	0.348	0.365	0.371	0.387	0.374	0.403	0.401
2012		0.034	0.126	0.211	0.272	0.301	0.308	0.331	0.335	0.351	0.354	0.370	0.389	0.389	0.382	0.388
2013		0.048	0.163	0.237	0.276	0.300	0.331	0.339	0.351	0.357	0.370	0.373	0.394	0.391	0.389	0.367
2014		0.057	0.179	0.233	0.271	0.293	0.322	0.342	0.353	0.367	0.365	0.374	0.375	0.378	0.418	0.371
2015		0.059	0.146	0.203	0.272	0.323	0.331	0.358	0.370	0.372	0.383	0.382	0.392	0.386	0.383	0.391
2016		0.048	0.111	0.212	0.255	0.290	0.333	0.339	0.361	0.367	0.370	0.381	0.378	0.388	0.383	0.395
2017		0.092	0.143	0.205	0.241	0.292	0.322	0.350	0.360	0.382	0.392	0.391	0.396	0.399	0.407	0.394

Т

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
2018		0.068	0.127	0.207	0.240	0.276	0.321	0.348	0.371	0.380	0.399	0.404	0.400	0.407	0.408	0.418
2019		0.135	0.186	0.209	0.235	0.269	0.298	0.327	0.345	0.376	0.387	0.403	0.409	0.423	0.417	0.449
2020		0.131	0.170	0.204	0.236	0.274	0.306	0.317	0.342	0.358	0.374	0.395	0.402	0.408	0.415	0.444

Table 4.4.4.2. Norwegian spring spawning herring. Weight at age in the stock (kg).

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1950	0.001	0.008	0.047	0.100	0.204	0.230	0.255	0.275	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1951	0.001	0.008	0.047	0.100	0.204	0.230	0.255	0.275	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1952	0.001	0.008	0.047	0.100	0.204	0.230	0.255	0.275	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1953	0.001	0.008	0.047	0.100	0.204	0.230	0.255	0.275	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1954	0.001	0.008	0.047	0.100	0.204	0.230	0.255	0.275	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1955	0.001	0.008	0.047	0.100	0.195	0.213	0.260	0.275	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1956	0.001	0.008	0.047	0.100	0.205	0.230	0.249	0.275	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1957	0.001	0.008	0.047	0.100	0.136	0.228	0.255	0.262	0.290	0.305	0.315	0.325	0.330	0.340	0.345	0.364
1958	0.001	0.008	0.047	0.100	0.204	0.242	0.292	0.295	0.293	0.305	0.315	0.330	0.340	0.345	0.352	0.363
1959	0.001	0.008	0.047	0.100	0.204	0.252	0.260	0.290	0.300	0.305	0.315	0.325	0.330	0.340	0.345	0.358
1960	0.001	0.008	0.047	0.100	0.204	0.270	0.291	0.293	0.321	0.318	0.320	0.344	0.349	0.370	0.379	0.378

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1961	0.001	0.008	0.047	0.100	0.232	0.250	0.292	0.302	0.304	0.323	0.322	0.321	0.344	0.357	0.363	0.368
1962	0.001	0.008	0.047	0.100	0.219	0.291	0.300	0.316	0.324	0.326	0.335	0.338	0.334	0.347	0.354	0.358
1963	0.001	0.008	0.047	0.100	0.185	0.253	0.294	0.312	0.329	0.327	0.334	0.341	0.349	0.341	0.358	0.375
1964	0.001	0.008	0.047	0.100	0.194	0.213	0.264	0.317	0.363	0.353	0.349	0.354	0.357	0.359	0.365	0.402
1965	0.001	0.008	0.047	0.100	0.186	0.199	0.236	0.260	0.363	0.350	0.370	0.360	0.378	0.387	0.390	0.394
1966	0.001	0.008	0.047	0.100	0.185	0.219	0.222	0.249	0.306	0.354	0.377	0.391	0.379	0.378	0.361	0.383
1967	0.001	0.008	0.047	0.100	0.180	0.228	0.269	0.270	0.294	0.324	0.420	0.430	0.366	0.368	0.433	0.414
1968	0.001	0.008	0.047	0.100	0.115	0.206	0.266	0.275	0.274	0.285	0.350	0.325	0.363	0.408	0.388	0.378
1969	0.001	0.008	0.047	0.100	0.115	0.145	0.270	0.300	0.306	0.308	0.318	0.340	0.368	0.360	0.393	0.397
1970	0.001	0.008	0.047	0.100	0.209	0.272	0.230	0.295	0.317	0.323	0.325	0.329	0.380	0.370	0.380	0.391
1971	0.001	0.015	0.080	0.100	0.190	0.225	0.250	0.275	0.290	0.310	0.325	0.335	0.345	0.355	0.365	0.390
1972	0.001	0.010	0.070	0.150	0.150	0.140	0.210	0.240	0.270	0.300	0.325	0.335	0.345	0.355	0.365	0.390
1973	0.001	0.010	0.085	0.170	0.259	0.342	0.384	0.409	0.404	0.461	0.520	0.534	0.500	0.500	0.500	0.500
1974	0.001	0.010	0.085	0.170	0.259	0.342	0.384	0.409	0.444	0.461	0.520	0.543	0.482	0.482	0.482	0.482
1975	0.001	0.010	0.085	0.181	0.259	0.342	0.384	0.409	0.444	0.461	0.520	0.543	0.482	0.482	0.482	0.482
1976	0.001	0.010	0.085	0.181	0.259	0.342	0.384	0.409	0.444	0.461	0.520	0.543	0.482	0.482	0.482	0.482
1977	0.001	0.010	0.085	0.181	0.259	0.343	0.384	0.409	0.444	0.461	0.520	0.543	0.482	0.482	0.482	0.482

Т

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1978	0.001	0.010	0.085	0.180	0.294	0.326	0.371	0.409	0.461	0.476	0.520	0.543	0.500	0.500	0.500	0.500
1979	0.001	0.010	0.085	0.178	0.232	0.359	0.385	0.420	0.444	0.505	0.520	0.551	0.500	0.500	0.500	0.500
1980	0.001	0.010	0.085	0.175	0.283	0.347	0.402	0.421	0.465	0.465	0.520	0.534	0.500	0.500	0.500	0.500
1981	0.001	0.010	0.085	0.170	0.224	0.336	0.378	0.387	0.408	0.397	0.520	0.543	0.512	0.512	0.512	0.512
1982	0.001	0.010	0.085	0.170	0.204	0.303	0.355	0.383	0.395	0.413	0.453	0.468	0.506	0.506	0.506	0.506
1983	0.001	0.010	0.085	0.155	0.249	0.304	0.368	0.404	0.424	0.437	0.436	0.493	0.495	0.495	0.495	0.495
1984	0.001	0.010	0.085	0.140	0.204	0.295	0.338	0.376	0.395	0.407	0.413	0.422	0.437	0.437	0.437	0.437
1985	0.001	0.010	0.085	0.148	0.234	0.265	0.312	0.346	0.370	0.395	0.397	0.428	0.428	0.428	0.428	0.428
1986	0.001	0.010	0.085	0.054	0.206	0.265	0.289	0.339	0.368	0.391	0.382	0.388	0.395	0.395	0.395	0.395
1987	0.001	0.010	0.055	0.090	0.143	0.241	0.279	0.299	0.316	0.342	0.343	0.362	0.376	0.376	0.376	0.376
1988	0.001	0.015	0.050	0.098	0.135	0.197	0.277	0.315	0.339	0.343	0.359	0.365	0.376	0.376	0.376	0.376
1989	0.001	0.015	0.100	0.154	0.175	0.209	0.252	0.305	0.367	0.377	0.359	0.395	0.396	0.396	0.396	0.396
1990	0.001	0.008	0.048	0.219	0.198	0.258	0.288	0.309	0.428	0.370	0.403	0.387	0.440	0.440	0.440	0.44
1991	0.001	0.011	0.037	0.147	0.210	0.244	0.300	0.324	0.336	0.343	0.382	0.366	0.425	0.425	0.425	0.425
1992	0.001	0.007	0.030	0.128	0.224	0.296	0.327	0.355	0.345	0.367	0.341	0.361	0.430	0.470	0.470	0.46
1993	0.001	0.008	0.025	0.081	0.201	0.265	0.323	0.354	0.358	0.381	0.369	0.396	0.393	0.374	0.403	0.4
1994	0.001	0.010	0.025	0.075	0.151	0.254	0.318	0.371	0.347	0.412	0.382	0.407	0.410	0.410	0.410	0.41

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1995	0.001	0.018	0.025	0.066	0.138	0.230	0.296	0.346	0.388	0.363	0.409	0.414	0.422	0.410	0.410	0.426
1996	0.001	0.018	0.025	0.076	0.118	0.188	0.261	0.316	0.346	0.374	0.390	0.390	0.384	0.398	0.398	0.398
1997	0.001	0.018	0.025	0.096	0.118	0.174	0.229	0.286	0.323	0.370	0.378	0.386	0.360	0.393	0.391	0.391
1998	0.001	0.018	0.025	0.074	0.147	0.174	0.217	0.242	0.278	0.304	0.310	0.359	0.340	0.344	0.385	0.369
1999	0.001	0.018	0.025	0.102	0.150	0.223	0.240	0.264	0.283	0.315	0.345	0.386	0.386	0.386	0.382	0.395
2000	0.001	0.018	0.025	0.119	0.178	0.225	0.271	0.285	0.298	0.311	0.339	0.390	0.398	0.406	0.414	0.427
2001	0.001	0.018	0.025	0.075	0.178	0.238	0.247	0.296	0.307	0.314	0.328	0.351	0.376	0.406	0.414	0.425
2002	0.001	0.010	0.023	0.057	0.177	0.241	0.275	0.302	0.311	0.314	0.328	0.341	0.372	0.405	0.415	0.438
2003	0.001	0.010	0.055	0.098	0.159	0.211	0.272	0.305	0.292	0.331	0.337	0.347	0.356	0.381	0.414	0.433
2004	0.001	0.010	0.055	0.106	0.149	0.212	0.241	0.279	0.302	0.337	0.354	0.355	0.360	0.371	0.400	0.429
2005	0.001	0.010	0.046	0.112	0.156	0.234	0.267	0.295	0.330	0.363	0.377	0.414	0.406	0.308	0.420	0.452
2006	0.001	0.010	0.042	0.107	0.179	0.232	0.272	0.297	0.318	0.371	0.365	0.393	0.395	0.399	0.415	0.428
2007	0.001	0.010	0.036	0.086	0.155	0.226	0.265	0.312	0.310	0.364	0.384	0.352	0.386	0.304	0.420	0.412
2008**	0.001	0.010	0.044	0.077	0.146	0.212	0.269	0.289	0.327	0.351	0.358	0.372	0.411	0.353	0.389	0.393
2009***	0.001	0.010	0.044	0.077	0.141	0.215	0.270	0.306	0.336	0.346	0.364	0.369	0.411	0.353	0.389	0.393
2010****	0.001	0.01	0.044	0.077	0.188	0.22	0.251	0.286	0.308	0.333	0.344	0.354	0.373	0.353	0.389	0.393
2011	0.001	0.01	0.044	0.118	0.185	0.209	0.246	0.277	0.310	0.322	0.339	0.349	0.364	0.363	0.389	0.393

	AGE															
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
2012	0.001	0.01	0.044	0.138	0.185	0.256	0.273	0.290	0.305	0.330	0.342	0.361	0.390	0.377	0.389	0.393
2013	0.001	0.01	0.044	0.138	0.204	0.267	0.305	0.309	0.320	0.328	0.346	0.350	0.390	0.377	0.389	0.393
2014	0.001	0.01	0.044	0.138	0.198	0.274	0.301	0.326	0.333	0.339	0.347	0.344	0.362	0.362	0.389	0.393
2015	0.001	0.01	0.044	0.138	0.187	0.243	0.299	0.326	0.319	0.345	0.346	0.354	0.382	0.376	0.389	0.393
2016	0.001	0.01	0.054	0.115	0.186	0.247	0.293	0.320	0.334	0.353	0.354	0.352	0.361	0.370	0.380	0.388
2017	0.001	0.01	0.054	0.115	0.190	0.247	0.282	0.322	0.338	0.351	0.359	0.361	0.361	0.368	0.380	0.386
2018	0.001	0.01	0.054	0.115	0.149	0.225	0.260	0.289	0.312	0.343	0.359	0.361	0.369	0.368	0.377	0.386
2019	0.001	0.01	0.054	0.104	0.151	0.203	0.277	0.311	0.331	0.355	0.353	0.363	0.381	0.376	0.385	0.382
2020	0.001	0.01	0.054	0.104	0.150	0.203	0.266	0.301	0.328	0.343	0.358	0.366	0.374	0.367	0.384	0.391
2021	0.001	0.01	0.054	0.104	0.160	0.209	0.266	0.284	0.302	0.325	0.352	0.366	0.384	0.376	0.404	0.391

** mean weight at ages 11 and 13 are mean of 5 previous years at the same age. These age groups were not present in the catches of the wintering survey from which the stock weight are derived.

*** derived from catch data from the wintering area north of 69°N during December 2008–January 2009 for age groups 4–11.

**** derived from catch data from the wintering area north of 69°N during January 2010 for age groups 4–12.

YEAR/AGE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1950	0	0	0	0	0.2	0.8	1	1	1	1	1	1	1	1	1	1
1951	0	0	0	0	0.2	0.8	1	1	1	1	1	1	1	1	1	1
1952	0	0	0	0	0.1	0.6	1	1	1	1	1	1	1	1	1	1
1953	0	0	0	0	0.3	0.4	0.9	1	1	1	1	1	1	1	1	1
1954	0	0	0	0	0.1	0.7	0.9	1	1	1	1	1	1	1	1	1
1955	0	0	0	0.1	0.4	0.4	1	1	1	1	1	1	1	1	1	1
1956	0	0	0	0	0.5	0.7	0.6	1	1	1	1	1	1	1	1	1
1957	0	0	0	0	0.3	0.8	0.8	0.7	1	1	1	1	1	1	1	1
1958	0	0	0	0	0.3	0.5	0.9	0.9	1	1	1	1	1	1	1	1
1959	0	0	0	0	0.7	0.8	1	0.9	1	1	1	1	1	1	1	1
1960	0	0	0	0	0.3	0.9	0.9	1	1	1	1	1	1	1	1	1
1961	0	0	0	0	0.1	0.8	1	0.9	1	1	1	1	1	1	1	1
1962	0	0	0	0	0.1	0.7	1	1	1	1	1	1	1	1	1	1
1963	0	0	0	0	0.1	0.4	1	1	1	1	1	1	1	1	1	1
1964	0	0	0	0	0.1	0.4	0.8	1	1	1	1	1	1	1	1	1
1965	0	0	0	0	0.5	0.4	0.9	0.8	1	1	1	1	1	1	1	1
1966	0	0	0	0	0.5	0.7	0.9	1	1	1	1	1	1	1	1	1
1967	0	0	0	0	0.3	0.8	1	1	1	1	1	1	1	1	1	1

YEAR/AGE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1968	0	0	0	0	0	0.7	0.9	1	1	1	1	1	1	1	1	1
1969	0	0	0	0.1	0.2	0.3	1	1	1	1	1	1	1	1	1	1
1970	0	0	0	0	0.4	0.3	0.4	1	1	1	1	1	1	1	1	1
1971	0	0	0	0	0.1	0.7	1	1	1	1	1	1	1	1	1	1
1972	0	0	0	0	0.4	0.3	1	1	1	1	1	1	1	1	1	1
1973	0	0	0	0.1	0.6	1	1	1	1	1	1	1	1	1	1	1
1974	0	0	0	0	0.6	0.9	1	1	1	1	1	1	1	1	1	1
1975	0	0	0	0.1	0.5	0.9	1	1	1	1	1	1	1	1	1	1
1976	0	0	0	0.1	0.9	0.9	1	1	1	1	1	1	1	1	1	1
1977	0	0	0	0.3	0.8	1	1	1	1	1	1	1	1	1	1	1
1978	0	0	0	0.2	0.9	1	1	1	1	1	1	1	1	1	1	1
1979	0	0	0	0.1	0.9	1	1	1	1	1	1	1	1	1	1	1
1980	0	0	0	0.1	0.9	1	1	1	1	1	1	1	1	1	1	1
1981	0	0	0	0.1	1	1	1	1	1	1	1	1	1	1	1	1
1982	0	0	0	0.1	0.8	1	1	1	1	1	1	1	1	1	1	1
1983	0	0	0	0.1	0.9	1	1	1	1	1	1	1	1	1	1	1
1984	0	0	0	0.1	0.7	1	1	1	1	1	1	1	1	1	1	1
1985	0	0	0	0.1	0.8	0.9	1	1	1	1	1	1	1	1	1	1

YEAR/AGE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1986	0	0	0	0	0.5	0.9	0.9	1	1	1	1	1	1	1	1	1
1987	0	0	0	0	0.1	0.8	0.9	0.9	1	1	1	1	1	1	1	1
1988	0	0	0	0	0.2	0.7	0.9	1	1	1	1	1	1	1	1	1
1989	0	0	0	0	0.4	0.8	1	1	1	1	1	1	1	1	1	1
1990	0	0	0	0.2	0.5	0.9	1	1	1	1	1	1	1	1	1	1
1991	0	0	0	0	0.9	0.9	1	1	1	1	1	1	1	1	1	1
1992	0	0	0	0	0.8	1	1	1	1	1	1	1	1	1	1	1
1993	0	0	0	0	0.5	1	1	1	1	1	1	1	1	1	1	1
1994	0	0	0	0	0.1	0.9	1	1	1	1	1	1	1	1	1	1
1995	0	0	0	0	0	0.6	1	1	1	1	1	1	1	1	1	1
1996	0	0	0	0	0	0.5	0.9	1	1	1	1	1	1	1	1	1
1997	0	0	0	0.1	0	0.4	0.9	1	1	1	1	1	1	1	1	1
1998	0	0	0	0	0.6	0.4	0.9	1	1	1	1	1	1	1	1	1
1999	0	0	0	0	0.3	0.9	0.9	1	1	1	1	1	1	1	1	1
2000	0	0	0	0	0.2	0.8	1	1	1	1	1	1	1	1	1	1
2001	0	0	0	0	0.3	0.9	0.9	1	1	1	1	1	1	1	1	1
2002	0	0	0	0	0.1	0.9	1	1	1	1	1	1	1	1	1	1
2003	0	0	0	0	0.2	0.7	1	1	1	1	1	1	1	1	1	1

Т

YEAR/AGE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
2004	0	0	0	0	0.3	0.9	1	1	1	1	1	1	1	1	1	1
2005	0	0	0	0	0.2	0.8	1	1	1	1	1	1	1	1	1	1
2006	0	0	0	0	0.2	0.8	1	1	1	1	1	1	1	1	1	1
2007	0	0	0	0	0.2	0.8	1	1	1	1	1	1	1	1	1	1
2008	0	0	0	0	0.1	0.7	0.9	1	1	1	1	1	1	1	1	1
2009	0	0	0	0	0.1	0.4	0.9	1	1	1	1	1	1	1	1	1
2010	0	0	0	0	0.2	0.4	0.7	1	1	1	1	1	1	1	1	1
2011	0	0	0	0	0.4	0.7	0.8	0.9	1	1	1	1	1	1	1	1
2012	0	0	0	0	0.5	0.9	0.9	1	1	1	1	1	1	1	1	1
2013	0	0	0	0	0.4	0.8	1	1	1	1	1	1	1	1	1	1
2014	0	0	0	0	0.3	0.9	0.9	1	1	1	1	1	1	1	1	1
2015	0	0	0	0	0.3	0.9	1	1	1	1	1	1	1	1	1	1
2016	0	0	0	0	0.1	0.5	0.9	1	1	1	1	1	1	1	1	1
2017	0	0	0	0	0.4	0.8	1	1	1	1	1	1	1	1	1	1
2018	0	0	0	0	0.4	0.8	1	1	1	1	1	1	1	1	1	1
2019	0	0	0	0	0.4	0.8	1	1	1	1	1	1	1	1	1	1
2020	0	0	0	0	0.1	0.8	1	1	1	1	1	1	1	1	1	1
2021	0	0	0	0	0.4	0.6	1	1	1	1	1	1	1	1	1	1

YEAR	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	TOTAL	BIOMASS
1988	0	392	307	8015	81	33	12	36	22	45	0	0	0	0	8943	1621
1989	161	16	338	91	3973	101	12	4	55	0	4	42	0	9	4813	1169
1990																
1991																
1992																
1993																
1994	37	100	48	848	483	62	13	144	49	1836	4	4	0	0	3665	1207
1995	4	450	4679	3211	1957	299	20	0	106	55	2327	0	0	0	13745	2860
1996	119	186	1976	7960	2326	875	301	0	0	136	0	1760	0	0	15645	3366
1997																
1998	51	308	978	2982	12859	8133	1851	592	163	43	0	329	0	1400	29705	6886
1999	114	1530	369	1351	2669	9334	7004	1666	511	130	0	0	353	373	25438	6262
2000	1394	691	2600	109	477	1144	4282	2838	493	50	2	0	7	228	14315	3285
2001																
2002																
2003																
2004																

Table 4.4.7.1. Norwegian Spring-spawning herring. Estimated indices (mean of bootstrap with 1000 iterations in StoX) from the acoustic surveys on the spawning grounds in February–March. Numbers in millions. Biomass in thousand tonnes. "Fleet 1".

YEAR	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	TOTAL	BIOMASS
2005	38	238	661	2128	5947	8328	613	503	156	92	576	1152	587	9	21026	5260
2006	26	90	6054	548	882	3362	3311	110	86	20	89	58	246	63	14951	3431
2007	33	367	1618	12397	815	655	2956	3205	141	228	40	204	284	470	23427	5350
2008	15	48	2564	2824	8882	522	471	1566	1567	161	102	46	128	136	19090	4553
2009																
2010																
2011																
2012																
2013																
2014																
2015	204	533	2754	744	3267	388	692	2715	784	7222	367	1658	51	237	21662	6365
2016	18	197	237	594	365	2119	240	514	2930	652	3995	199	824	97	12982	4182
2017	19	110	1076	641	880	428	1326	181	206	2026	303	2542	80	729	10550	3314
2018	104	146	1720	2771	459	845	639	1095	444	370	1159	368	1538	354	12013	3262
2019	2	372	310	940	3778	754	879	660	1054	736	412	1807	182	2161	14166	4250
2020	6	44	3502	571	1212	3337	530	609	364	650	131	279	677	825	12750	3274
2021	21	112	293	10210	733	738	1932	427	451	312	219	395	208	1153	17250	4021

	AGE				
YEAR	1	2	3	4	5
1991	24.3	5.2			
1992	32.6	14	5.7		
1993	102.7	25.8	1.5		
1994	6.6	59.2	18	1.7	
1995	0.5	7.7	8	1.1	
1996*	0.1	0.25	1.8	0.6	0.03
1997**	2.6	0.04	0.4	0.35	0.05
1998	9.5	4.7	0.01	0.01	0
1999	49.5	4.9	0	0	0
2000	105.4	27.9	0	0	0
2001	0.3	7.6	8.8	0	0
2002	0.5	3.9	0	0	0
2003***					
2004***					
2005	23.3	4.5	2.5	0.4	0.3
2006	3.7	35.0	5.3	0.87	0

Table 4.4.7.2. Norwegian spring-spawning herring. Acoustic estimates (billion individuals) of immature herring in the Barents Sea in May/June from IESNS. Values in the years 2009–2021 are estimated with StoX (mean of bootstrap with 1000 iterations). "Fleet 4".

	AGE				
YEAR	1	2	3	4	5
2007	2.1	3.7	12.5	1.9	0
2008^					
2009	0.289	0.300	0.233	0.060	
2010	5.196	1.380	0.000	0.000	
2011	1.166	3.920	0.041	0.000	
2012	0.787	0.030	0.000	0.000	
2013	0.107	2.190	0.211	0.070	
2014	4.239	3.110	1.728	0.127	0.043
2015	0.345	11.760	1.183	0.206	0.000
2016	1.826	5.620	1.568	0.101	0.038
2017	14.522	3.080	0.000	0.000	
2018	7.329	17.420	0.827	0.009	
2019	0.113	2.370	17.481	0.044	
2020***					
2021	0.021	0.002	0.086	0.002	

*Average of Norwegian and Russian estimates

**Combination of Norwegian and Russian estimates as described in 1998 WG report, since then only Russian estimates

***No surveys / ^Not a full survey

	Age																Total
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	Total	Biomass
1996	0	0	4114	22461	13244	4916	2045	424	14	7	155	0	3134			50514	8532
1997	0	0	1169	3599	18867	13546	2473	1771	178	77	288	190	60	2697		44915	9435
1998	24	1404	367	1099	4410	16378	10160	2059	804	183	0	0	35	0	492	37415	8004
1999	0	215	2191	322	965	3067	11763	6077	853	258	5	14	0	158	128	26016	6299
2000	0	157	1353	2783	92	384	1302	7194	5344	1689	271	0	114	0	75	20758	6001
2001	0	1540	8312	1430	1463	179	204	3215	5433	1220	94	178	0	0	6	23274	3937
2002	0	677	6343	9619	1418	779	375	847	1941	2500	1423	61	78	28	0	26089	4628
2003	32073	8115	6561	9985	9961	1499	732	146	228	1865	2359	1769		287	0	75580	6653
2004	0	13735	1543	5227	12571	10710	1075	580	76	313	362	1294	1120	10	88	48704	7687
2005	0	1293	19679	1353	1765	6205	5371	651	388	139	262	526	1003	364	115	39114	5109
2006	0	19	306	14560	1396	2011	6521	6978	679	713	173	407	921	618	243	35545	9100
2007	0	411	2889	5877	20292	1260	1992	6780	5582	647	488	372	403	1048	1010	49051	12161
2008	0	1213	655	10997	8406	14798	1543	2232	4890	2790	511	148	172	244	529	49187	10655
2009	0	137	1817	2280	12118	8599	9735	2054	1433	2608	1375	237	198	112	248	43057	9692
2010	231	119	572	2296	1828	8395	5918	5676	923	888	1002	550	89	42	62	28772	6649
2011	0	1110	921	1663	3592	2605	9303	4390	4257	771	956	732	269	29	33	30731	7336

Table 4.4.7.3. Norwegian spring-spawning herring. Estimates from the international acoustic survey on the feeding areas in the Norwegian Sea in May (IESNS). Numbers in millions. Biomass in thousands. Values in the years 2008–2021 are estimated indices by StoX (mean of bootstrap with 1000 iterations). "Fleet 5".

	Age																Total
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	Total	Biomass
2012	0	396	2942	410	668	1736	2633	4328	1884	2148	297	604	303	139	41	18540	4476
2013	0	201	718	3555	425	1161	1859	2905	4449	2772	1865	678	790	222	102	21722	5653
2014	13	515	1258	784	2788	715	1118	2634	2268	2806	1118	703	337	72	212	17350	4504
2015	0	391	432	1316	1132	3535	1309	1191	3156	2526	4457	687	816	290	211	21450	5851
2016	0	75	3550	1538	2229	1749	2631	938	1092	1806	1882	2853	934	436	130	21851	5408
2017	10	131	948	4295	1198	1543	826	1414	317	738	1008	1741	2230	507	237	17159	4152
2018	0	496	1004	1968	5664	970	1409	569	1279	354	675	1564	1464	1498	500	19412	4987
2019	4	157	2625	680	2187	4656	1158	1223	952	1232	823	655	1406	917	803	19487	4805
2020	0	43	472	13065	513	1009	2492	786	629	434	694	324	505	726	902	22616	4210
2021	15	34	1109	1290	11906	698	1051	2039	501	551	476	462	442	615	1515	22984	5096

Year/Age	2	3	4	5	6	7	8	9	10	11	12+
1988	0.359	0.192	0.259	0.095	0.355	0.482	0.412	0.309	0.363	0.526	0.373
1989	0.259	0.521	0.484	0.420	0.113	0.491	0.790	0.833	0.499	0.663	0.682
1990	0.302	0.285	0.536	0.330	0.340	0.127	0.677	0.642	0.584	0.552	0.598
1991	0.498	0.368	0.528	0.658	0.308	0.363	0.128	0.546	0.944	1.620	0.632
1992	0.669	0.324	0.237	0.437	0.694	0.329	0.417	0.127	0.548	0.850	0.647
1993	0.387	0.249	0.162	0.173	0.366	0.483	0.245	0.285	0.105	NA	NA
1994	0.373	0.238	0.160	0.109	0.141	0.302	0.373	0.228	0.231	0.090	0.424
1995	0.706	0.198	0.111	0.092	0.091	0.126	0.303	0.300	0.186	0.175	0.081
1996	0.244	0.234	0.088	0.068	0.080	0.105	0.164	0.419	0.385	0.189	0.083
1997	0.271	0.152	0.120	0.065	0.063	0.086	0.113	0.194	0.279	0.238	0.100
1998	0.176	0.185	0.124	0.108	0.065	0.073	0.107	0.152	0.218	0.258	0.126
1999	0.436	0.149	0.231	0.150	0.103	0.067	0.075	0.117	0.162	0.309	0.132
2000	0.310	0.175	0.095	0.233	0.160	0.105	0.072	0.077	0.129	0.184	0.150
2001	0.580	0.164	0.142	0.103	0.225	0.168	0.116	0.083	0.098	0.183	0.204
2002	0.193	0.133	0.091	0.122	0.113	0.245	0.169	0.121	0.090	0.111	0.176
2003	0.451	0.181	0.113	0.087	0.138	0.140	0.267	0.182	0.129	0.094	0.120
2004	0.216	0.262	0.170	0.103	0.088	0.160	0.149	0.254	0.204	0.140	0.090
2005	0.277	0.102	0.169	0.139	0.091	0.080	0.155	0.155	0.226	0.190	0.091
2006	0.214	0.181	0.087	0.176	0.139	0.087	0.085	0.172	0.180	0.243	0.107
2007	0.368	0.127	0.109	0.065	0.144	0.124	0.087	0.098	0.211	0.258	0.141
2008	0.154	0.229	0.095	0.089	0.060	0.132	0.122	0.093	0.108	0.245	0.146
2009	0.159	0.134	0.145	0.074	0.081	0.063	0.147	0.121	0.104	0.125	0.150
2010	0.194	0.164	0.130	0.134	0.077	0.088	0.070	0.138	0.137	0.111	0.123
2011	0.123	0.193	0.163	0.126	0.130	0.086	0.096	0.091	0.171	0.157	0.132
2012	0.320	0.130	0.207	0.156	0.118	0.121	0.086	0.114	0.110	0.203	0.154
2013	0.275	0.195	0.119	0.185	0.159	0.118	0.124	0.093	0.139	0.147	0.210
2014	0.653	0.249	0.198	0.122	0.207	0.184	0.133	0.146	0.107	0.176	0.178
2015	0.502	0.299	0.200	0.204	0.144	0.235	0.190	0.143	0.164	0.132	0.175

Table 4.4.8.1 Norwegian spring-spawning herring. Relative standard error of estimated catch-at-age used by XSAM.

Year/Age	2	3	4	5	6	7	8	9	10	11	12+
2016	0.557	0.214	0.217	0.159	0.174	0.141	0.204	0.183	0.138	0.167	0.122
2017	0.297	0.191	0.115	0.158	0.123	0.141	0.117	0.166	0.151	0.119	0.106
2018	0.269	0.257	0.195	0.121	0.145	0.137	0.161	0.137	0.174	0.166	0.098
2019	0.569	0.146	0.191	0.136	0.095	0.146	0.129	0.156	0.140	0.151	0.096
2020	0.371	0.208	0.096	0.185	0.145	0.105	0.157	0.143	0.168	0.135	0.103

Table 4.4.8.2 Norwegian spring-spawning herring. Relative standard error of Fleet 1 used by XSAM.

			-	-						
Year/Age	3	4	5	6	7	8	9	10	11	12+
1988	0.317	0.334	0.162	0.449	0.548	0.685	0.537	0.599	0.512	NA
1989	0.643	0.327	0.438	0.190	0.428	0.685	0.874	0.489	NA	0.489
1990	NA									
1991	NA									
1992	NA									
1993	NA									
1994	0.429	0.504	0.267	0.302	0.476	0.673	0.395	0.502	0.225	0.750
1995	0.307	0.183	0.199	0.222	0.336	0.612	NA	0.423	0.489	0.214
1996	0.374	0.221	0.163	0.214	0.265	0.336	NA	NA	0.400	0.227
1997	NA									
1998	0.334	0.259	0.202	0.146	0.162	0.225	0.289	0.385	0.517	0.228
1999	0.234	0.321	0.241	0.207	0.157	0.167	0.230	0.299	0.404	0.276
2000	0.279	0.208	0.421	0.303	0.250	0.187	0.204	0.301	0.500	0.354
2001	NA									
2002	NA									
2003	NA									
2004	NA									
2005	0.354	0.282	0.218	0.174	0.161	0.287	0.300	0.388	0.437	0.214
2006	0.439	0.173	0.294	0.265	0.197	0.198	0.420	0.443	0.612	0.306
2007	0.321	0.231	0.147	0.269	0.283	0.203	0.199	0.397	0.357	0.258
2008	0.504	0.209	0.205	0.159	0.297	0.304	0.233	0.233	0.386	0.313
2009	NA									

Year/Age	3	4	5	6	7	8	9	10	11	12+
2010	NA									
2011	NA									
2012	NA									
2013	NA									
2014	NA									
2015	0.296	0.206	0.275	0.198	0.318	0.279	0.206	0.272	0.166	0.214
2016	0.369	0.354	0.289	0.322	0.218	0.353	0.298	0.203	0.283	0.179
2017	0.420	0.253	0.284	0.265	0.311	0.242	0.376	0.365	0.220	0.193
2018	0.394	0.228	0.205	0.306	0.267	0.284	0.252	0.308	0.321	0.196
2019	0.320	0.334	0.261	0.192	0.274	0.265	0.282	0.254	0.276	0.184
2020	0.514	0.195	0.291	0.247	0.197	0.296	0.287	0.322	0.283	0.223
2021	0.418	0.338	0.154	0.276	0.275	0.223	0.311	0.307	0.333	0.221

Table 4.4.8.3 Norwegian spring-spawning herring. Relative standard error of Fleet 4 used by XSAM.

Year/Age	2
1991	0.462
1992	0.419
1993	0.395
1994	0.364
1995	0.444
1996	0.620
1997	0.741
1998	0.466
1999	0.464
2000	0.392
2001	0.445
2002	0.475
2003	ΝΑ
2004	NA
2005	0.468

Year/Age	2
2006	0.383
2007	0.477
2008	0.595
2009	0.609
2010	0.525
2011	0.474
2012	0.763
2013	0.502
2014	0.485
2015	0.426
2016	0.458
2017	0.486
2018	0.410
2019	0.498
2020	NA
2021	1.006

Table 4.4.8.4 Norwegian spring-spawning herring. Relative standard error of Fleet 5 used by XSAM.

Year/Age	3	4	5	6	7	8	9	10	11	12+
1996	0.199	0.133	0.151	0.191	0.235	0.343	0.777	0.917	0.437	0.213
1997	0.269	0.206	0.138	0.150	0.225	0.244	0.423	0.516	0.377	0.216
1998	0.355	0.273	0.196	0.143	0.160	0.235	0.294	0.420	NA	0.326
1999	0.232	0.367	0.282	0.214	0.155	0.181	0.290	0.387	0.994	0.373
2000	0.260	0.219	0.495	0.351	0.262	0.174	0.187	0.246	0.382	0.417
2001	0.168	0.257	0.255	0.422	0.409	0.211	0.186	0.266	0.492	0.419
2002	0.180	0.162	0.257	0.297	0.353	0.291	0.238	0.224	0.257	0.429
2003	0.178	0.161	0.161	0.254	0.301	0.443	0.398	0.241	0.228	0.235
2004	0.252	0.188	0.152	0.158	0.275	0.318	0.518	0.369	0.356	0.224
2005	0.137	0.260	0.244	0.180	0.187	0.310	0.351	0.448	0.385	0.236
2006	0.371	0.147	0.258	0.236	0.178	0.175	0.307	0.303	0.425	0.232

Year/Age	3	4	5	6	7	8	9	10	11	12+
2007	0.217	0.183	0.136	0.264	0.237	0.177	0.185	0.310	0.332	0.218
2008	0.309	0.157	0.168	0.147	0.252	0.231	0.191	0.219	0.328	0.274
2009	0.242	0.229	0.154	0.167	0.162	0.235	0.256	0.222	0.259	0.295
2010	0.319	0.229	0.242	0.168	0.183	0.184	0.285	0.288	0.279	0.300
2011	0.285	0.247	0.206	0.222	0.164	0.196	0.198	0.297	0.282	0.275
2012	0.216	0.346	0.308	0.245	0.222	0.197	0.240	0.233	0.374	0.274
2013	0.303	0.206	0.343	0.270	0.241	0.216	0.195	0.219	0.241	0.243
2014	0.265	0.296	0.219	0.303	0.272	0.222	0.230	0.218	0.272	0.261
2015	0.342	0.262	0.271	0.207	0.262	0.268	0.212	0.224	0.195	0.237
2016	0.206	0.252	0.231	0.244	0.222	0.284	0.274	0.243	0.240	0.196
2017	0.283	0.197	0.268	0.252	0.293	0.257	0.368	0.301	0.279	0.193
2018	0.279	0.238	0.184	0.282	0.257	0.320	0.263	0.358	0.307	0.190
2019	0.222	0.307	0.232	0.193	0.270	0.266	0.283	0.266	0.293	0.203
2020	0.335	0.151	0.328	0.279	0.225	0.296	0.312	0.341	0.305	0.225
2021	0.273	0.263	0.154	0.305	0.276	0.236	0.330	0.322	0.334	0.214

Table 4.5.1.1. Norwegian spring-spawning herring. Parameter estimates of the final XSAM model fit. The estimates from
the final 2020 assessment are also shown.

Parameter	Estimate	Std. Error	CV	Estimate 2020	Std. Error 2020
$\log(N_{3,1988})$	7.087	0.167	0.024	7.079	0.168
$log(N_{4,1988})$	6.621	0.206	0.031	6.611	0.208
$log(N_{5,1988})$	9.584	0.069	0.007	9.583	0.070
$log(N_{6,1988})$	4.825	0.381	0.079	4.813	0.378
$log(N_{7,1988})$	3.518	0.529	0.150	3.498	0.524
$\log(N_{8,1988})$	3.087	0.591	0.192	3.068	0.583
$log(N_{9,1988})$	4.076	0.457	0.112	4.062	0.453
$log(N_{10,1988})$	3.286	0.667	0.203	3.269	0.659
$log(N_{11,1988})$	3.180	0.695	0.218	3.161	0.690
$log(N_{12,1988})$	3.578	0.753	0.210	3.557	0.746
$\log(q_3^{F1})$	-9.669	0.179	0.019	-9.633	0.182

Parameter	Estimate	Std. Error	cv	Estimate 2020	Std. Error 2020
$\log(q_4^{F1})$	-8.108	0.128	0.016	-8.073	0.130
$\log(q_5^{F1})$	-7.474	0.115	0.015	-7.547	0.120
$\log(q_6^{F1})$	-7.296	0.117	0.016	-7.299	0.119
$\log(q_7^{F1})$	-7.152	0.128	0.018	-7.134	0.130
$\log(q_8^{F1})$	-6.939	0.091	0.013	-6.925	0.094
$\log(q_2^{F4})$	-14.515	0.193	0.013	-14.304	0.179
$\log(q_3^{F5})$	-7.653	0.107	0.014	-7.637	0.108
$\log(q_4^{F5})$	-7.123	0.095	0.013	-7.105	0.097
$\log(q_5^{F5})$	-6.904	0.093	0.013	-6.922	0.096
$\log(q_6^{F5})$	-6.805	0.097	0.014	-6.795	0.098
$\log(q_7^{F5})$	-6.734	0.103	0.015	-6.720	0.104
$\log(q_8^{F5})$	-6.557	0.109	0.017	-6.536	0.111
$\log(q_9^{F5})$	-6.543	0.121	0.019	-6.527	0.123
$\log(q_{10}^{F5})$	-6.490	0.135	0.021	-6.469	0.138
$\log(q_{11}^{F5})$	-6.433	0.131	0.020	-6.424	0.135
$\log(\sigma_1^2)$	-5.000	1.441	0.288	-5.000	1.420
$\log(\sigma_2^2)$	-2.769	0.256	0.092	-2.730	0.255
$\log(\sigma_4^2)$	-2.250	0.303	0.135	-2.204	0.308
$\log(\sigma_R^2)$	-0.008	0.275	36.114	-0.082	0.261
log(h)	1.595	0.065	0.041	1.575	0.066
μ_R	9.275	0.180	0.019	9.329	0.176
α_Y	-0.513	0.300	0.584	-0.519	0.307
βγ	0.810	0.108	0.134	0.808	0.111
α_{2U}	-1.242	0.167	0.135	-1.238	0.169
<i>α</i> _{3U}	-0.620	0.096	0.155	-0.625	0.098
$lpha_{4U}$	-0.214	0.060	0.279	-0.219	0.062
$lpha_{5U}$	0.043	0.051	1.188	0.045	0.053
α_{6U}	0.196	0.055	0.282	0.200	0.057

Parameter	Estimate	Std. Error	cv	Estimate 2020	Std. Error 2020
α_{7U}	0.264	0.060	0.226	0.264	0.061
α_{8U}	0.327	0.066	0.203	0.326	0.068
α_{9U}	0.368	0.072	0.195	0.365	0.074
<i>α</i> ₁₀₀	0.420	0.078	0.186	0.415	0.080
β _U	0.603	0.053	0.088	0.604	0.054

Table 4.5.1.2 Norwegian spring-spawning herring. Point estimates of Stock in numbers (millions).

Year/Age	2	3	4	5	6	7	8	9	10	11	12+
1988	667	1196	751	14525	125	34	22	59	27	24	36
1989	1172	258	966	628	12010	103	28	16	40	16	43
1990	4341	471	217	817	526	10007	85	22	13	30	47
1991	11462	1759	401	184	687	439	8363	70	18	10	62
1992	18678	4654	1506	341	156	577	369	6970	57	14	59
1993	50069	7587	3991	1279	287	130	481	306	5763	47	59
1994	59966	20335	6500	3366	1044	232	106	389	246	4565	82
1995	15759	24344	17414	5474	2637	782	178	82	301	185	3435
1996	5713	6389	20795	14582	4178	1762	512	128	60	207	2241
1997	2152	2312	5423	17203	11156	2809	1133	336	89	40	1357
1998	10925	868	1916	4367	13112	7769	1753	666	209	54	756
1999	6479	4411	715	1480	3370	9600	5440	1124	414	123	459
2000	32832	2623	3675	558	1131	2503	6811	3648	703	246	301
2001	29100	13302	2195	2744	418	831	1788	4654	2250	411	271
2002	11426	11797	11281	1748	2013	312	616	1285	3229	1486	453
2003	6698	4626	9968	9110	1290	1414	227	432	873	2148	1293
2004	57944	2716	3919	8240	7155	951	1034	164	304	588	2251
2005	24530	23513	2308	3266	6664	5513	709	750	119	213	1759
2006	43221	9948	19881	1902	2611	5104	3904	483	509	79	1131
2007	12199	17529	8460	16452	1529	2044	3745	2676	335	352	705
2008	17776	4941	14869	6967	12623	1159	1497	2552	1776	225	718
2009	7147	7171	4180	12257	5391	8808	819	1030	1633	1122	627

Year/Age	2	3	4	5	6	7	8	9	10	11	12+
2010	5104	2867	6004	3432	9479	3839	5737	549	642	977	1080
2011	15456	2048	2390	4935	2735	7153	2678	3584	344	396	1122
2012	5525	6204	1711	1962	3980	2138	5395	1821	2398	224	964
2013	8202	2234	5194	1412	1580	3155	1636	3966	1286	1681	836
2014	5340	3322	1883	4259	1139	1253	2459	1223	2903	930	1968
2015	17817	2167	2827	1571	3461	923	1005	1936	938	2189	2318
2016	7282	7234	1850	2379	1299	2826	752	806	1531	727	3600
2017	4265	2956	6171	1551	1951	1043	2257	595	628	1168	3361
2018	35586	1729	2499	5058	1229	1460	769	1642	431	433	3241
2019	4567	14438	1468	2077	4085	937	1100	570	1219	312	2593
2020	5769	1852	12244	1206	1636	3035	682	770	398	856	1857
2021	1932	2338	1564	10046	956	1238	2218	478	528	270	1773

Table 4.5.1.3 Norwegian spring-spawning herring. Point estimates of Fishing mortality.

Year/Age	2	3	4	5	6	7	8	9	10	11	12+
1988	0.050	0.064	0.029	0.040	0.044	0.044	0.143	0.225	0.337	0.173	0.173
1989	0.011	0.021	0.017	0.027	0.032	0.036	0.077	0.110	0.151	0.091	0.091
1990	0.004	0.012	0.015	0.024	0.031	0.030	0.052	0.073	0.098	0.070	0.070
1991	0.001	0.005	0.011	0.019	0.025	0.025	0.032	0.044	0.057	0.048	0.048
1992	0.001	0.004	0.013	0.024	0.030	0.030	0.035	0.040	0.055	0.056	0.056
1993	0.001	0.005	0.020	0.054	0.062	0.058	0.064	0.068	0.083	0.103	0.103
1994	0.001	0.005	0.022	0.094	0.139	0.115	0.100	0.107	0.135	0.152	0.152
1995	0.003	0.008	0.027	0.120	0.254	0.273	0.176	0.171	0.222	0.329	0.329
1996	0.005	0.014	0.040	0.118	0.247	0.292	0.271	0.212	0.244	0.440	0.440
1997	0.008	0.038	0.067	0.122	0.212	0.321	0.381	0.325	0.351	0.464	0.464
1998	0.007	0.044	0.108	0.109	0.162	0.206	0.295	0.326	0.377	0.419	0.419
1999	0.004	0.032	0.098	0.119	0.147	0.193	0.250	0.319	0.370	0.509	0.509
2000	0.004	0.028	0.142	0.140	0.158	0.187	0.231	0.333	0.387	0.552	0.552
2001	0.003	0.015	0.078	0.160	0.140	0.150	0.180	0.215	0.265	0.260	0.260
2002	0.004	0.018	0.064	0.154	0.203	0.171	0.205	0.237	0.258	0.255	0.255

Year/Age	2	3	4	5	6	7	8	9	10	11	12+
2003	0.003	0.016	0.040	0.092	0.155	0.162	0.170	0.203	0.246	0.274	0.274
2004	0.002	0.013	0.032	0.062	0.111	0.144	0.172	0.173	0.203	0.328	0.328
2005	0.002	0.018	0.044	0.074	0.117	0.195	0.232	0.238	0.264	0.406	0.406
2006	0.002	0.012	0.039	0.068	0.095	0.160	0.228	0.218	0.218	0.390	0.390
2007	0.004	0.015	0.044	0.115	0.127	0.161	0.234	0.260	0.246	0.238	0.238
2008	0.008	0.017	0.043	0.106	0.210	0.197	0.224	0.296	0.309	0.258	0.258
2009	0.013	0.028	0.047	0.107	0.190	0.279	0.251	0.324	0.364	0.332	0.332
2010	0.013	0.032	0.046	0.077	0.132	0.210	0.320	0.317	0.334	0.456	0.456
2011	0.013	0.030	0.048	0.065	0.096	0.132	0.235	0.252	0.278	0.304	0.304
2012	0.006	0.028	0.042	0.066	0.082	0.118	0.158	0.198	0.205	0.201	0.201
2013	0.004	0.021	0.048	0.065	0.082	0.099	0.141	0.162	0.174	0.096	0.096
2014	0.002	0.011	0.031	0.058	0.060	0.070	0.089	0.115	0.133	0.073	0.073
2015	0.001	0.008	0.022	0.040	0.053	0.055	0.072	0.084	0.105	0.075	0.075
2016	0.002	0.009	0.026	0.049	0.070	0.074	0.085	0.099	0.121	0.102	0.102
2017	0.003	0.018	0.049	0.083	0.140	0.154	0.168	0.172	0.222	0.185	0.185
2018	0.002	0.014	0.035	0.064	0.121	0.133	0.149	0.148	0.174	0.198	0.198
2019	0.003	0.015	0.046	0.089	0.147	0.168	0.207	0.209	0.203	0.297	0.297
2020	0.003	0.019	0.048	0.083	0.129	0.164	0.204	0.226	0.238	0.275	0.275
2021	0.003	0.017	0.046	0.083	0.128	0.157	0.191	0.210	0.229	0.229	0.229

 Table 4.5.1.4 Norwegian spring spawning herring. Final stock summary table. High and low represent approximate 95% confidence limits.

Year	Recruit- ment (Age 2)	High	Low	Stock Size: SSB	High	Low	Catches	Fishing Pres- sure: F	High	Low
	millions			thou- sand tonnes			thou- sand tonnes	Ages 5– 12		
1988	667	989	345	2124	2400	1849	135	0.042	0.059	0.025
1989	1172	1657	688	3285	3711	2859	104	0.033	0.047	0.019
1990	4341	5388	3294	3558	4009	3106	86	0.030	0.043	0.017
1991	11462	13409	9515	3335	3757	2913	85	0.031	0.045	0.018
1992	18678	21417	15939	3363	3767	2960	104	0.039	0.055	0.023

Year	Recruit- ment (Age 2) millions	High	Low	Stock Size: SSB thou-	High	Low	Catches thou-	Fishing Pres- sure: F Ages 5–	High	Low
				sand tonnes			sand tonnes	12		
1993	50069	55571	44567	3336	3699	2973	232	0.076	0.100	0.052
1994	59966	66116	53816	3468	3830	3106	479	0.128	0.160	0.096
1995	15759	18170	13349	3537	3885	3190	906	0.218	0.259	0.176
1996	5713	6861	4565	4122	4471	3773	1220	0.191	0.223	0.159
1997	2152	2726	1578	5382	5795	4969	1427	0.193	0.221	0.164
1998	10925	12759	9091	5960	6413	5506	1223	0.187	0.216	0.157
1999	6479	7731	5227	5853	6329	5377	1235	0.213	0.248	0.178
2000	32832	36897	28767	4874	5311	4436	1207	0.257	0.301	0.213
2001	29100	32868	25332	4046	4440	3651	766	0.203	0.242	0.165
2002	11426	13371	9481	3572	3940	3205	808	0.223	0.267	0.180
2003	6698	8015	5381	4205	4612	3799	790	0.152	0.181	0.123
2004	57944	64360	51527	5299	5793	4805	794	0.128	0.152	0.103
2005	24530	28040	21020	5426	5947	4904	1003	0.172	0.204	0.140
2006	43221	48701	37741	5391	5905	4878	969	0.176	0.211	0.142
2007	12199	14435	9964	6936	7565	6306	1267	0.155	0.183	0.127
2008	17776	20753	14798	7024	7689	6360	1546	0.200	0.235	0.165
2009	7147	8631	5663	7001	7704	6297	1687	0.205	0.239	0.171
2010	5104	6244	3963	6214	6890	5539	1457	0.213	0.252	0.174
2011	15456	18154	12758	5883	6568	5197	993	0.158	0.188	0.127
2012	5525	6718	4332	5729	6432	5027	826	0.141	0.169	0.112
2013	8202	9902	6502	5363	6049	4678	685	0.120	0.147	0.094
2014	5340	6633	4046	5181	5867	4495	461	0.084	0.104	0.065
2015	17817	21498	14136	4818	5470	4166	329	0.067	0.085	0.050
2016	7282	9302	5262	4257	4845	3669	383	0.085	0.107	0.064
2017	4265	5780	2749	4536	5134	3938	722	0.161	0.198	0.124
2018	35586	45580	25592	4130	4714	3547	593	0.128	0.158	0.098

Year	Recruit- ment (Age 2)	High	Low	Stock Size: SSB	High	Low	Catches	Fishing Pres- sure: F	High	Low
	millions			thou- sand tonnes			thou- sand tonnes	Ages 5– 12		
2019	4567	7072	2063	3947	4544	3349	777	0.186	0.230	0.142
2020	5769	10342	1196	3375	3948	2803	721	0.188	0.238	0.138
2021	1932	5617	0	3765	4470	3060				
Average	16091	18873	13360	4655	5173	4137	788	0.145	0.175	0.115

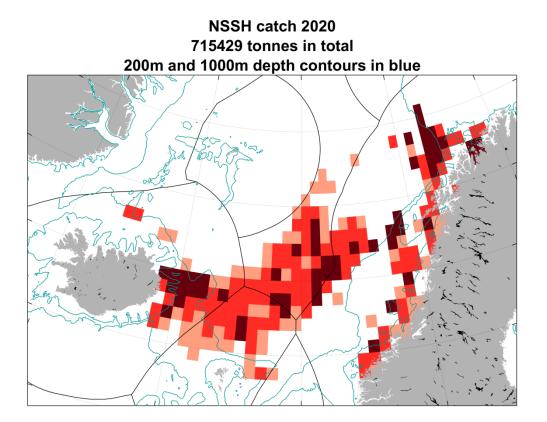
Table 4.8.1.1 Norwegian Spring-spawning herring. Input to short-term prediction. Stock size is in millions and weight in kg.

Input for 2021										
	Stockno.	Natural	Maturity	Proportion of M	Proportion of F	Weight	Exploitation	Weight		
age	1-Jan.	mortality	ogive	before spawning	before spawning	in stock	pattern	in catch		
2	1932	0.9	0	0	0	0.054	0.004	0.161		
3	2338	0.15	0	0	0	0.104	0.023	0.207		
4	1564	0.15	0.4	0	0	0.160	0.062	0.237		
5	10046	0.15	0.6	0	0	0.209	0.111	0.273		
6	956	0.15	1	0	0	0.266	0.172	0.308		
7	1238	0.15	1	0	0	0.284	0.211	0.330		
8	2218	0.15	1	0	0	0.302	0.258	0.353		
9	478	0.15	1	0	0	0.325	0.283	0.371		
10	528	0.15	1	0	0	0.352	0.308	0.387		
11	270	0.15	1	0	0	0.366	0.308	0.400		
12	1773	0.15	1	0	0	0.389	0.308	0.416		

Input	Input for 2022 and 2023										
	Stockno.	Natural	Maturity	Proportion of M	Proportion of F	Weight	Exploitation	Weight			
age	1-Jan.	mortality	ogive	before spawning	before spawning	in stock	pattern	in catch			
			(2022/2023)								
2	10667	0.9	0/0	0	0	0.054	0.014	0.161			
3		0.15	0/0	0	0	0.104	0.072	0.207			

4	0.15	0.4/0.4	0	0	0.154	0.194	0.237
5	0.15	0.8/0.8	0	0	0.205	0.357	0.273
6	0.15	0.9/1	0	0	0.270	0.541	0.308
7	0.15	1/1	0	0	0.299	0.656	0.330
8	0.15	1/1	0	0	0.320	0.788	0.353
9	0.15	1/1	0	0	0.341	0.868	0.371
10	0.15	1/1	0	0	0.354	0.963	0.387
11	0.15	1/1	0	0	0.365	1	0.400
12	0.15	1/1	0	0	0.383	1	0.416

Table 4.8.2.1 Norwegian spring spawning herring. Short-term prediction.


Basis:	
SSB (2021):	3.765 million t
Landings(2021):	881 097 t (sum of national quotas)
SSB(2022):	3.92 million t
Fw5–12+(2021)	0.174
Recruitment(2021–2023):	1.932,10.667,10.667

The catch options:

Rationale	Catches (2022)	Basis	FW (2022)	SSB (2023)	P(SSB2023 <blim)< th=""><th>% SSB change</th><th>%TAC change</th><th>%CATCH change</th></blim)<>	% SSB change	%TAC change	%CATCH change
Manage- ment strat- egy	598588	F=0.14	0.14(0.109, 0.178)*	3607.952(2816.421, 4655.025) *	0.004	-7.951(- 28,19) *	-8.1	-32
Fmsy	665436	F=0.157	0.157(0.124, 0.205) *	3549.887(2730.085, 4546.795) *	0.007	-9.432(- 30,16) *	2.2	-24
Zero Catch	0	F=0.0	0(0, 0) *	4129.529(3298.271, 5124.868) *	0	5.356(- 16,31) *	-100	-100
Fpa	665436	F=0.157	0.157(0.123, 0.205) *	3549.887(2694.812, 4623.457) *	0.008	-9.432(- 31,18) *	2.2	-24
Flim	1152881	F=0.291	0.291(0.225, 0.4) *	3127.774(2254.705, 4230.593) *	0.073	-20.202(- 42,8) *	77.1	31
SSB ₂₀₂₂ =B _{lim}	1883778	F=0.534	0.534(0.411 <i>,</i> 0.795) *	2500.041(1610.483, 3517.416) *	0.472	-36.217(- 59,-10) *	189.4	114
SSB ₂₀₂₂ =B _{pa}	1087697	F=0.272	0.272(0.215, 0.37) *	3184.08(2315.502, 4261.386) *	0.061	-18.765(- 41,9) *	67.1	23

Status quo	729494	F=0.174	· · ·	3494.282(2652.31 <i>,</i> 4516.433) *	0.01	-10.851(- 12.1 32,15) *	-17

*95% confidence interval

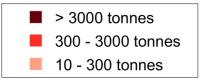


Figure 4.2.1.1. Total reported landings (ICES estimates) of Norwegian spring-spawning herring in 2020 by ICES rectangle. Landings below 10 tonnes per statistical rectangle are not included. The landings with information on statistical rectangle constitute 99.2% of the reported landings.

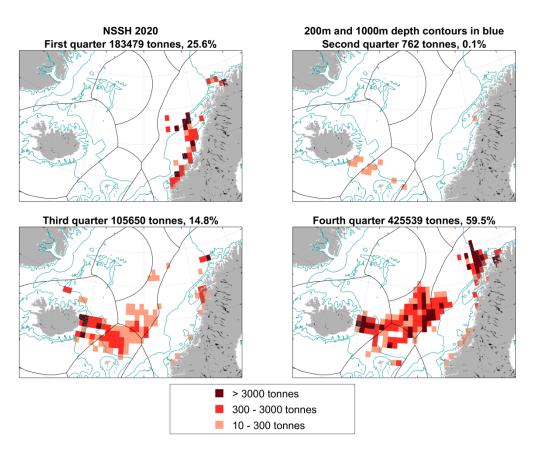


Figure 4.2.1.2. Total reported landings (ICES estimates) of Norwegian spring-spawning herring in 2020 by quarter and ICES rectangle. Landings below 10 tonnes per statistical rectangle are not included. The landings with information on statistical rectangle constitute 99.2% of the reported landings.

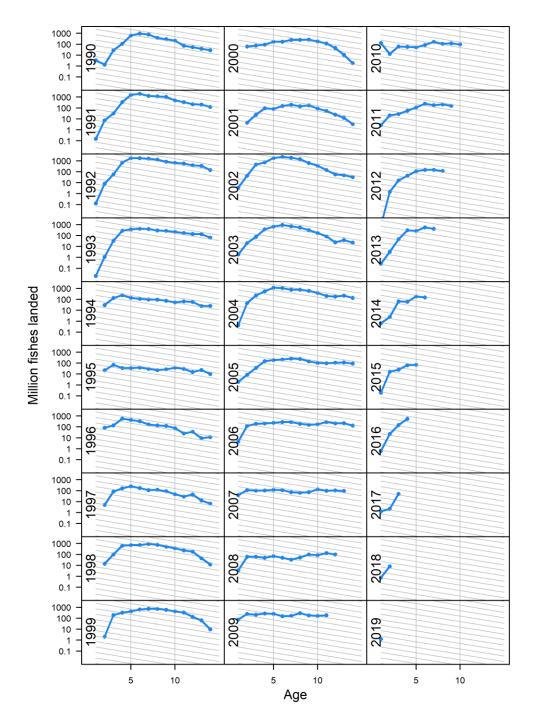


Figure 4.4.3.1. Norwegian spring spawning herring. Age disaggregated landings in numbers plotted on a log scale. Age is on x-axis. The labels indicate year classes and grey lines correspond to Z = 0.3.

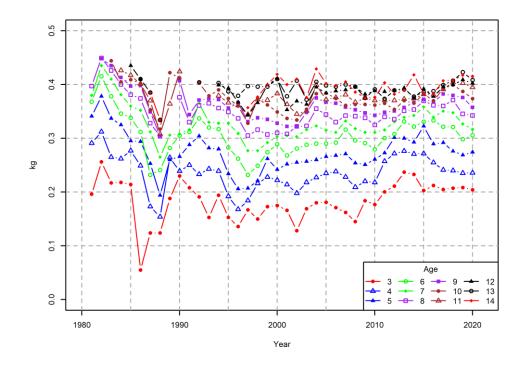


Figure 4.4.4.1. Norwegian spring spawning herring. Mean weight at age by age groups 3–14 in the years 1981–2020 in the landings.

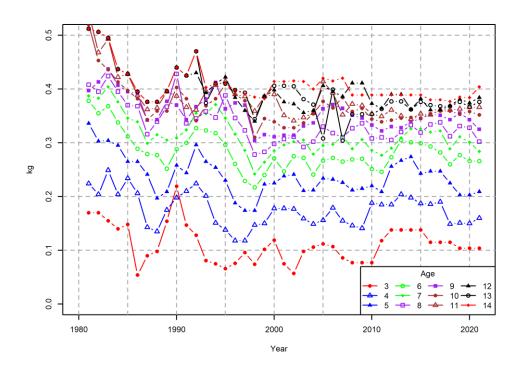


Figure 4.4.4.2. Norwegian spring-spawning herring. Mean weight at age in the stock by age groups 3–14 for the years 1981–2021.

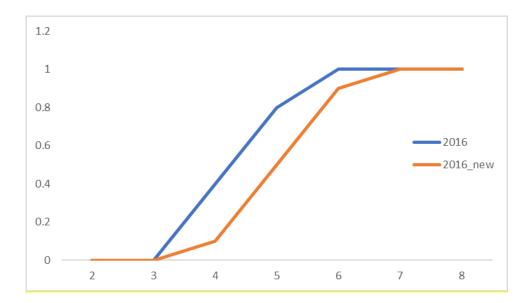


Figure 4.4.5.1. Assumed (blue line) and back-calculated (orange line) maturity-at-age for the year 2016.

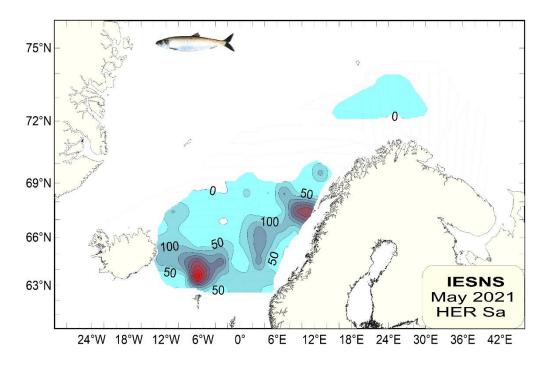


Figure 4.4.7.1. Distribution of Norwegian spring-spawning herring as measured during the IESNS survey in April-June 2021 in terms of NASC values (m²/nm²).

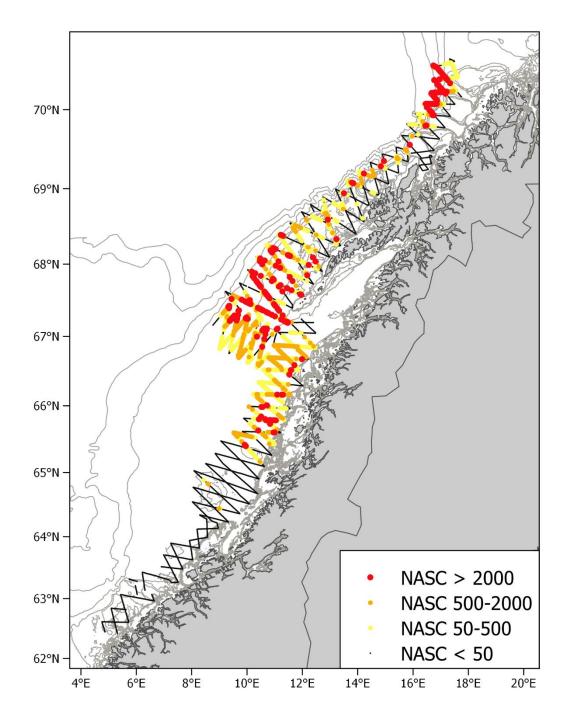


Figure 4.4.7.2. Norwegian acoustic survey on the NSSH spawning grounds. Distribution and acoustic density of herring recorded in 2021.

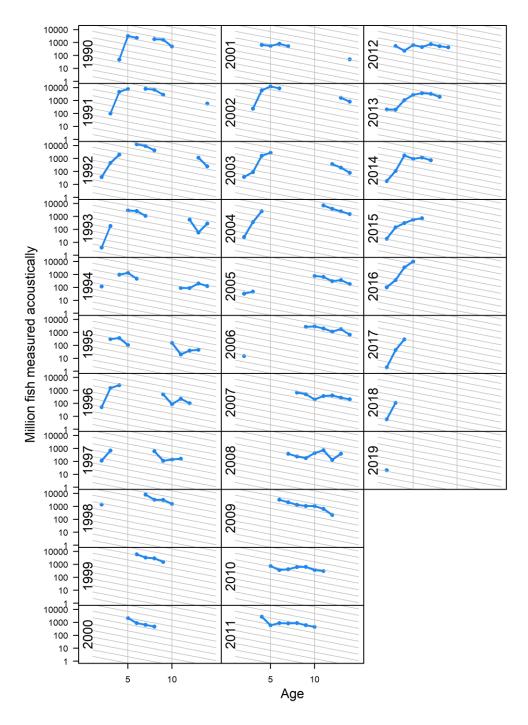


Figure 4.4.7.3. Norwegian spring spawning herring. Age disaggregated abundance indices (millions) from the acoustic survey on the spawning area in February-March (Fleet 1) plotted on a log scale. The labels indicate year classes and grey lines correspond to Z = 0.3. Age is on x-axis.

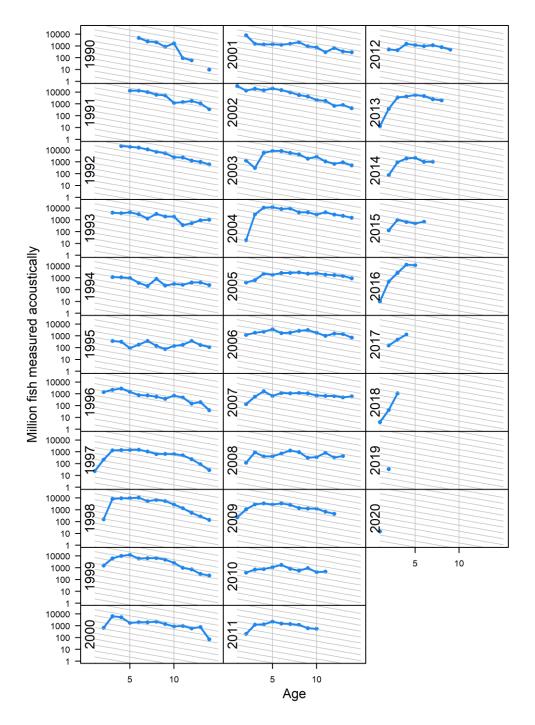


Figure 4.4.7.4. Norwegian spring spawning herring. Age disaggregated abundance indices (millions) from the acoustic survey in the feeding area in the Norwegian Sea in May (Fleet 5) plotted on a log scale. The labels indicate year classes and grey lines correspond to Z = 0.3.

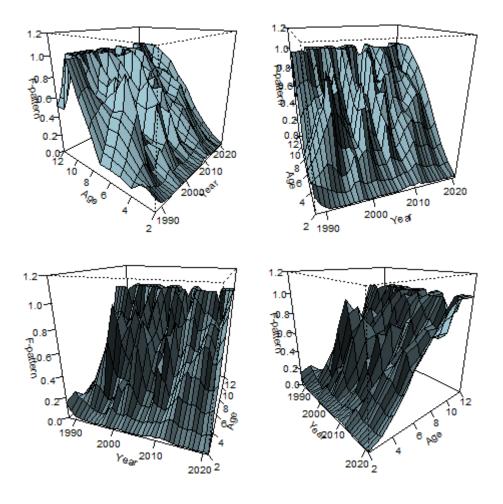


Figure 4.5.1.1. Estimated exploitation pattern for the years 1988–2021 by the XSAM model fit. All panels show the same data, but depicted at different angles to improve visibility at different time periods

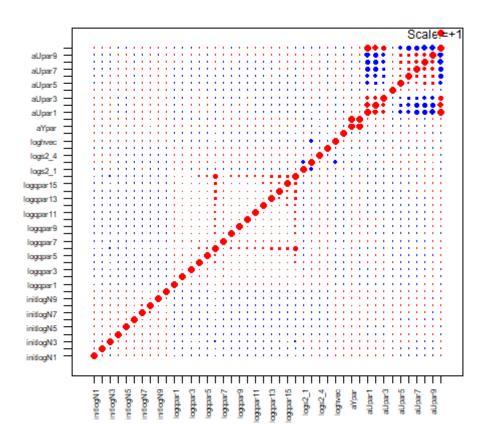


Figure 4.5.1.2. Norwegian spring spawning herring. Correlation between estimated parameters in the final XSAM model fit.

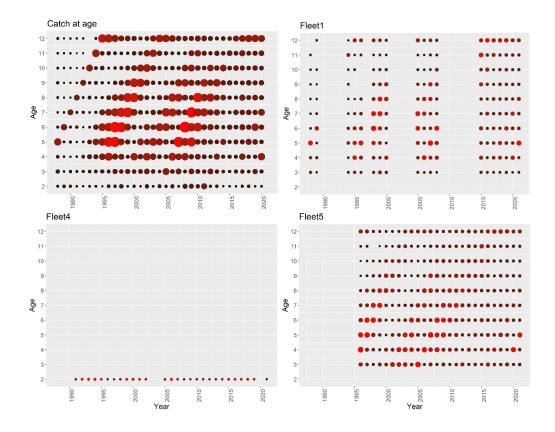


Figure 4.5.1.3. Norwegian spring spawning herring. Weights (inverse of variance) of data-input of the final XSAM model fit.

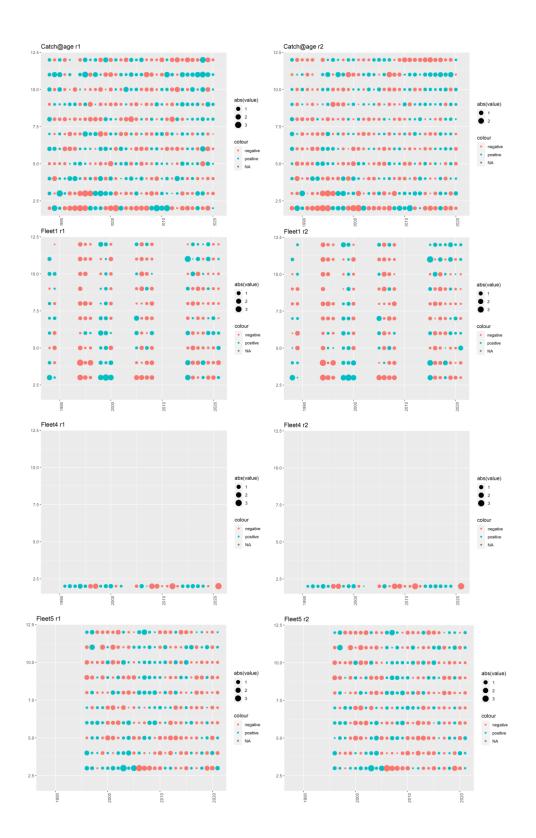


Figure 4.5.1.4. Norwegian spring spawning herring. Standardized residuals type 1 (left) and type 2 (right; see text) of data-input of the final XSAM model fit. Red is negative and blue is positive residuals.

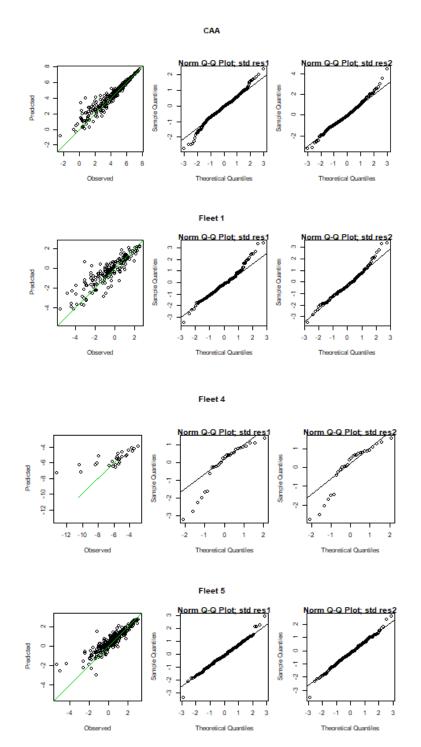


Figure 4.5.1.5. Norwegian spring spawning herring. Observed vs. predicted values (left column) and qq-plot based on type 1 (middle) and type 2 (right) residuals (see text) based on the final XSAM model fit.

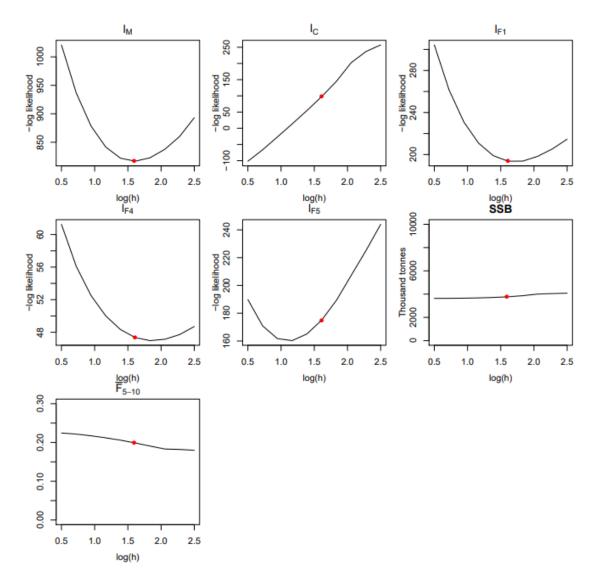


Figure 4.5.1.6. Norwegian spring spawning herring. Profiles of marginal log-likelihood l_M , the catch component l_C , Fleet 1 component l_{F1} , Fleet 4 component l_{F4} , Fleet 5 component l_{F5} , point estimate of SSB and average F (ages 5–12+) in 2020 over the common scaling factor for variance in data h for the final XSAM fit. The red dots indicate the value of the respective scaling factors for which the log-likelihood is maximized.

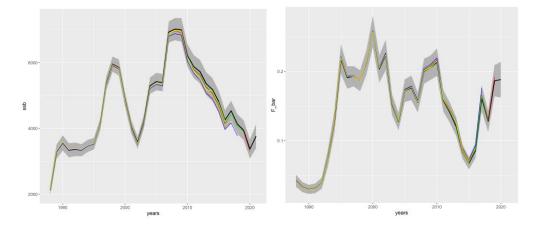


Figure 4.5.1.7. Norwegian spring spawning herring. Retrospective XSAM model fits of SSB and weighted average of fishing mortality ages 5–12 for the years 2015–2020. Mohn's rho computed to be -0.04 for SSB and -0.1 for F.

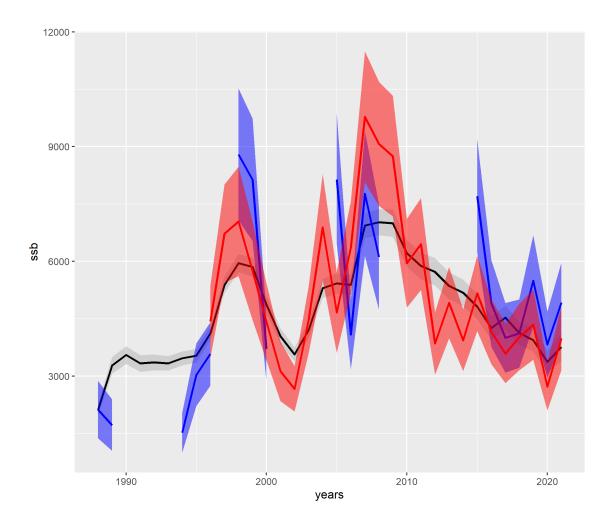


Figure 4.5.1.8. Norwegian spring spawning herring. Point estimates of Spawning-stock biomass by years 1988–2019 from model (black lines) and by survey indices from Fleet 1 (blue) and Fleet 5 (red). Shaded area is approximate to standard deviation.

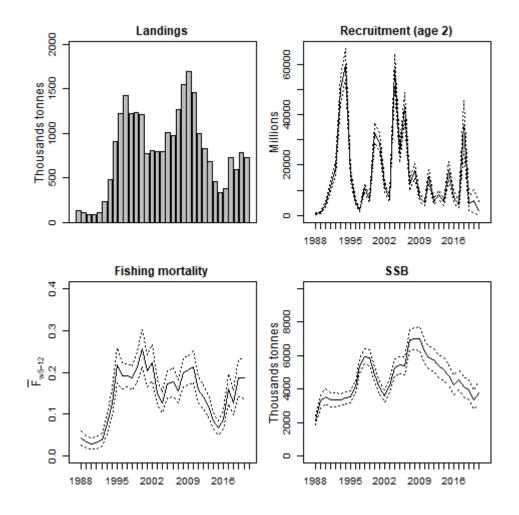


Figure 4.5.1.9. Total reported landings 1988–2020, estimated recruitment, weighted average of fishing mortality (ages 5–12) and spawning-stock biomass for the years 1988–2021 based on the final XSAM model fit.

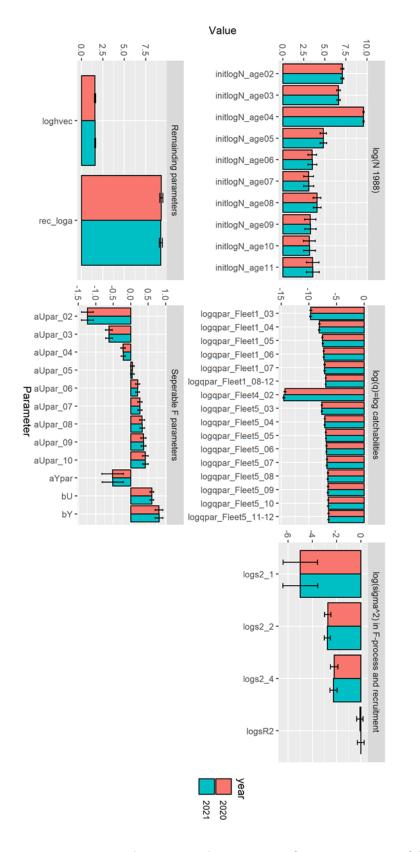


Figure 4.5.1.10. Norwegian spring-spawning herring. A visual representation of parameter estimates of the final XSAM model fit (see table 4.5.1.1). The estimates from the 2020 assessment are also shown (red).

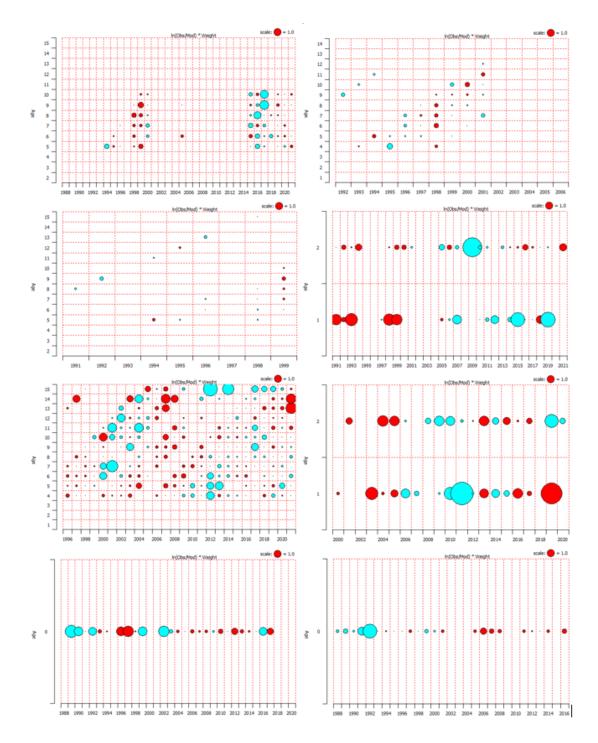


Figure 4.5.2.1.1. Norwegian spring-spawning herring. Residual sum of squares in the surveys separately from TASACS. First row starts with survey 1 and the last one in row four is larval survey.

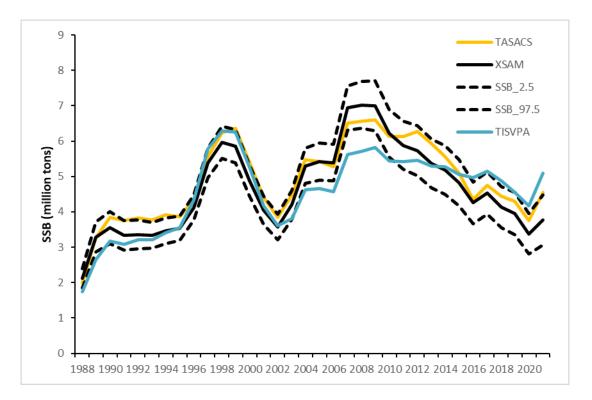


Figure 4.5.2.1.2. Comparison of SSB time-series from the final assessment from XSAM and exploratory runs from TASACS (following the 2008 benchmark procedure) and TISVPA. 95% confidence intervals from the XSAM final assessment are shown (dotted lines).

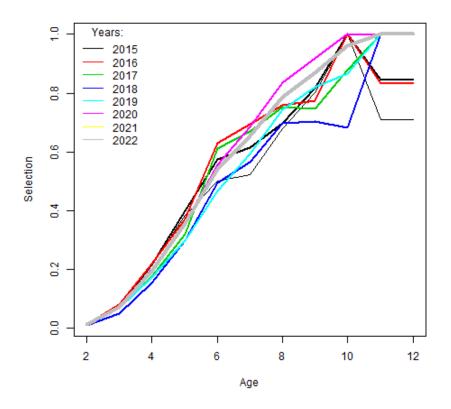
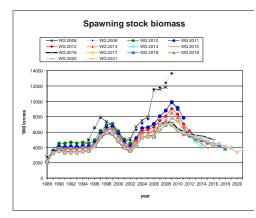
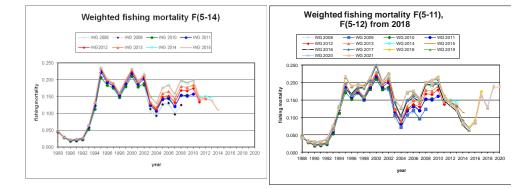




Figure 4.8.1.1. XSAM estimated selection pattern; selected years (estimates for 2015–2020 and predictions for 2021–2022) are shown in colours as indicated in the legend.

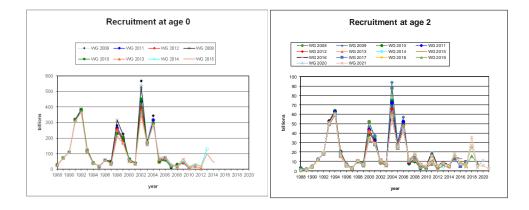


Figure 4.9.1. Norwegian spring spawning herring. Comparisons of spawning stock; weighted fishing mortality F(5-14) and F(5-11/5-12); and recruitment at age 0 and age 2 with previous assessments. In 2016 the proportion mature in the years 2006–2011 was changed; recruitment age changed from 0 to 2 and fishing mortality is calculated over ages 5 to 11. In 2018 (WKNSSHREF) the age range for the fishing mortality changed to ages 5 to 12.