# Golden redfish Sebastes norvegicus

## STOCK DESCRIPTION AND MANAGEMENT UNITS

Golden redfish (*Sebastes norvegicus*) in ICES division 5.a (Iceland), 5.b (Faroe Islands) and Subarea 14 (East Greenland) have been considered as one management unit. Catches in ICES Subarea 6 have traditionally been included in this report. Data from ICES Subarea 6 are, however, not used in the assessment.

### **SURVEYS**

This section describes results from various surveys conducted annually on the continental shelves and slopes of ICES Subareas 5 and 14.

#### **DIVISION 5.A**

Two bottom trawl surveys are conducted in Icelandic waters, the Icelandic spring groundfish survey (spring survey) and the Icelandic autumn groundfish survey (autumn survey). The spring survey has been conducted annually in March since 1985 and the autumn survey annually in October since 1996. The autumn survey was not conducted in 2011. The calculation of the survey indices includes length dependent diel vertical migration of the species.

Two survey indices are calculated from these surveys but only the index from the spring survey is used in the assessment of golden redfish. Length disaggregated indices from the spring survey are used in the Gadget model. Age-length keys from the autumn survey in 2 cm length groups are used in the Gadget model.

The total biomass of golden redfish as observed in the spring survey decreased from 1988 to a record low in 1995 (Figure 1 and Table 1). From 2000 to 2016 the biomass increased, with some fluctuation, to the highest value in the time-series. Since then, the index has decreased and was in 2019-2022 similar as in 2014 and 2015. The CV of the survey indices has been considerably higher after 2002.

The total biomass index from the autumn survey shows a similar trend as in the spring survey, that is, has gradually increased from 2000 to the highest value in the time series in 2014. The total biomass index has since then been fluctuating around the 2014 level but decreased sharply in 2020 and 2021 (Figure 1 and Table 1).

Length disaggregated indices from the spring survey shows that the peaks in length 4–11 cm, which can be seen first in 1987 (the 1985 cohort) and then in 1991–1992 (the 1990 cohort), reached the fishable stock approximately 10 years later (Figure 2). The increase in the survey index between 1995 and 2005 reflects the recruitment of these two strong year classes. During the 1999–2008 period the abundance of small redfish was highest in 2000-2003 (Figure 1). Very little of small redfish was observed in the spring survey 2009-2020 but in recent two years the index increased (Figure 1). The recruitment index in 2022 was the highest value observed since 2000.

In recent years, the modes of the length distribution in both surveys have shifted to the right and are narrower. The abundance of golden redfish smaller than 30 cm has decreased since 2006 in both surveys and is now at the lowest level in the time-series (Figures 1-3).

Age disaggregated abundance indices from the autumn survey are shown in Figure 4 and Table 2. The sharp increase in the survey indices since 2005 reflects the recruitment of the 1996–2007 cohorts. The 1996–2002 cohorts are gradually disappearing from the stock and the 2003–2008 cohorts are now the most abundant year classes. The age disaggregated abundance indices indicate that all year classes since 2009 are small.

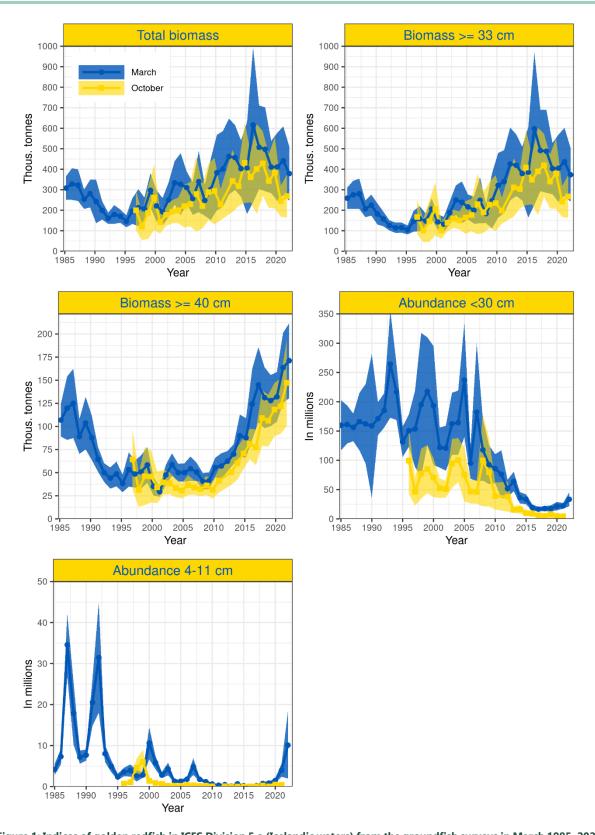



Figure 1: Indices of golden redfish in ICES Division 5.a (Icelandic waters) from the groundfish surveys in March 1985–2022 (blue line and shaded area) and October 1996–2021 (yellow lines and shaded areas). The shaded areas represent 95% CI.

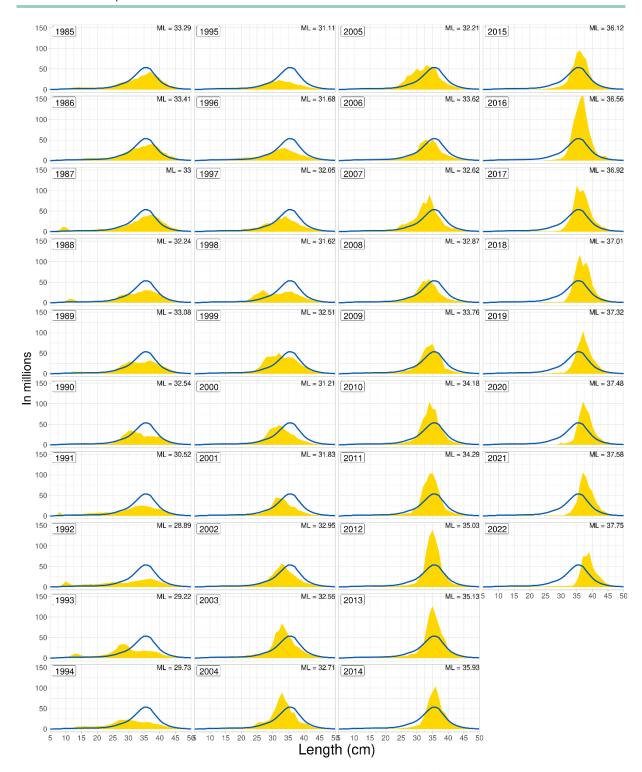



Figure 2: Length disaggregated abundance indices (yellow area) of golden redfish from the groundfish survey in March 1985–2022 conducted in Icelandic waters. The blue line is the mean of total indices 1985–2022.

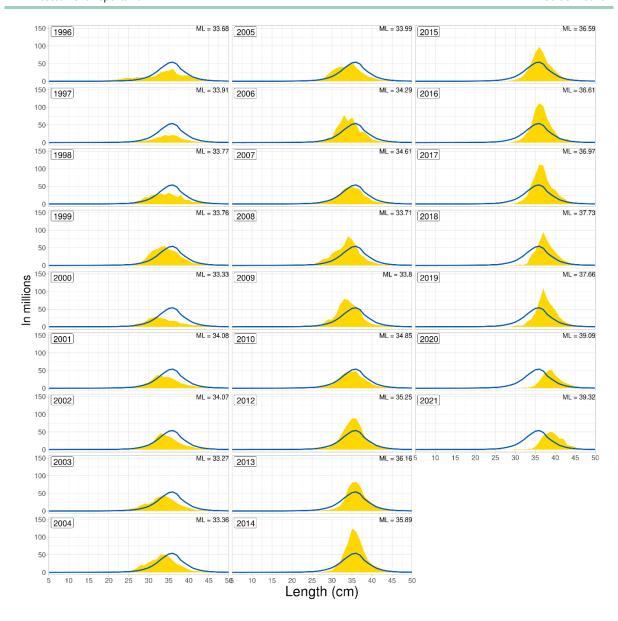



Figure 3: Length disaggregated abundance indices (yellow area) of golden redfish from the groundfish survey in October 1996–2021 conducted in Icelandic waters. The blue line is the mean of total indices 1996–2021. The survey was not conducted in 2011.

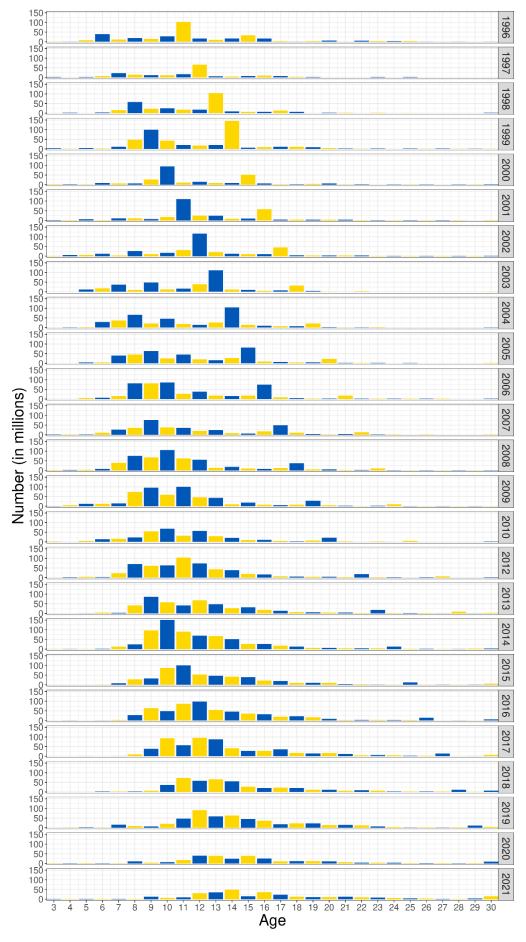



Figure 4: Age disaggregated abundance indices of golden redfish in the groundfish survey in October conducted in Icelandic waters 1996–2021. The survey was not conducted in 2011.

#### **DIVISION 5.B**

CPUE of golden redfish in Division 5.b are available from the Faroes spring groundfish survey from 1994–2022 and the summer survey 1996–2021. Both surveys show similar trends in the indices from 1998 onwards with sharp declines between 1998 and 1999 (Figure 5). Survey CPUE index in the spring survey since 2000 has been stable at low level. The CPUE index in the summer survey shows a similar trend as in the spring survey and has gradually decreased and is at the lowest level recorded in 2020 but increased in 2021.

The fish caught in the surveys in Division 5.b (Figures 6 and 7) is on the average larger than the fish caught in the Icelandic surveys (Figures 2 and 3) and the survey conducted in East Greenland waters (Figure 8). The modes of the length distribution in both surveys in Faroes waters have shifted to the right towards larger fish, and very little of fish smaller than 35 cm is caught. This is the same trend as observed in Icelandic and East Greenland waters.

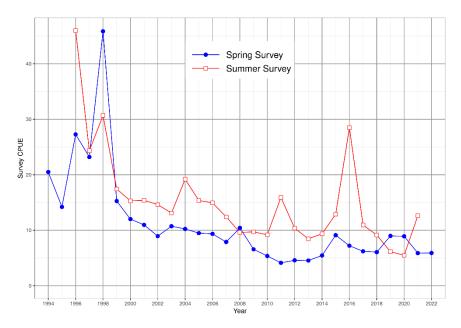



Figure 5: CPUE of golden redfish in the Faroes spring groundfish survey 1994–2022 (blue line) and the summer groundfish survey 1996–2021 (red line) in ICES Division 5.b.

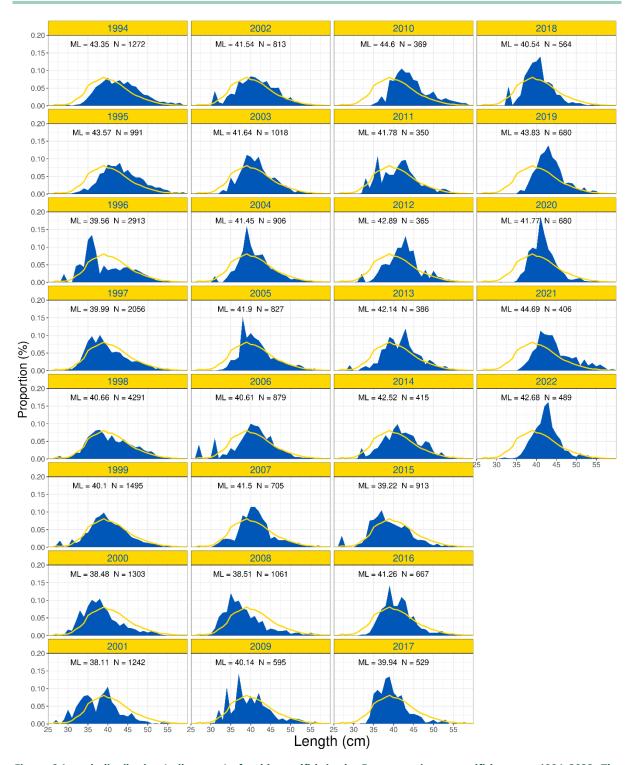



Figure 6 Length distribution (yellow area) of golden redfish in the Faeroes spring groundfish survey 1994–2022. The blue line is the mean for 1994–2022.

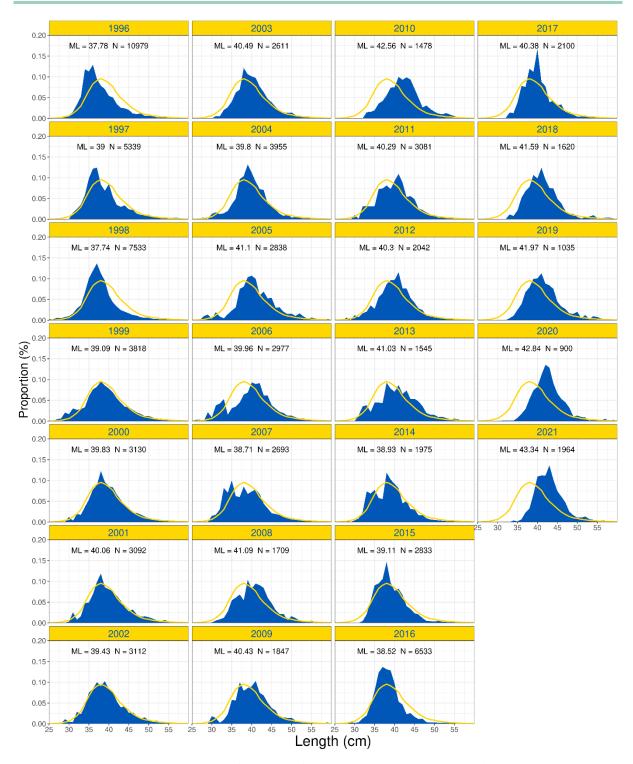



Figure 7 Length distribution (yellow area) of golden redfish in the Faeroes summer groundfish survey 1996–2021. The blue line is the mean for 1996–2021.

#### SUBAREA 14

The German groundfish survey has been conducted annually in the autumn from 1982 to 2017 and in 2019-2020 covering shelf areas and the continental slopes off West and East Greenland. The survey was not conducted in 2018 and 2021 because of various factor such as research vessel breakdown, bad weather and the Covid-19 pandemic.

Relative abundance and biomass indices for golden redfish (fish >17 cm) from the German groundfish survey are illustrated in Figure 8. After a severe depletion of the golden redfish stock on the traditional fishing grounds around East Greenland in the early 1990s, the survey estimates showed a significant increase from 2003, both in biomass and abundance (Figure 8). The survey indices in 2007–2020 were high but fluctuated. The biomass survey index in 2014–2016 were at the highest level in the time-series but decreased in 2017-2020 to a similar level as in 2006 (Figure 8a). It should be noted that the CV for the indices is high, and the increase is driven by few very large hauls. In 2010–2020, the biomass of pre-fishery recruits (17–30 cm) has decreased gradually compared to previous five years and in 2017-2020 very little of 17–30 cm fish was observed (Figure 8c).

Abundance indices of redfish smaller than 18 cm from the German groundfish survey show that juveniles were abundant in 1993 and 1995–1998. Since 2008, the survey index has been very low and in recent years at the lowest value recorded since 1982. Juvenile redfish were only classified to the genus Sebastes spp., as species identification of small specimens is difficult due to very similar morphological features. The 1999–2020 survey results indicate low abundance and are like those observed in the late 1980s. The Greenland shrimp and fish shallow water survey (no survey conducted 2017-2019) also shows that very few juvenile redfish (<18 cm, not classified to species) were present.

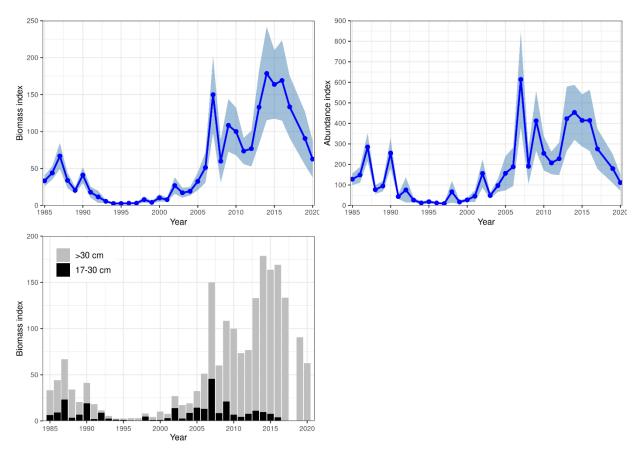



Figure 8: Golden redfish (>17 cm). Survey indices for East Greenland (ICES Subarea 14) from the German groundfish survey 1985–2020. a) Total biomass index, b) total abundance index, c) biomass index divided by size classes (17–30 cm and >30 cm). The survey was not conducted in 2018 and 2021.

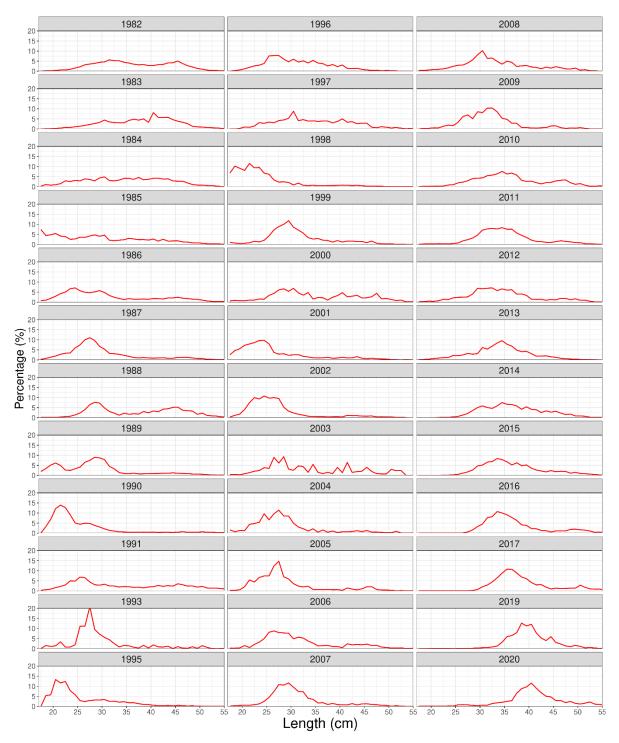



Figure 9. Golden redfish (>17 cm). Length frequencies for East Greenland (ICES Subarea 14) 1982–2020. The survey was not conducted in 2018 and 2021.

## **FISHERY**

#### **LANDINGS**

Total landings of golden redfish gradually decreased by more than 70% in 1982-1994 or from 130429 t in 1982 to 43515 t in 1994 (Table 3 and Figure 10). Since then, total annual landings have varied between 33451 and 59698 t. The total landings in 2021 were 43426 t, which is 2771 t less than in 2020. Most of the golden redfish catch or 90–98% has been taken in ICES Division 5.a.

Landings of golden redfish in Division 5.a declined from 97 899 t in 1982 to 38 669 t in 1994 (Table 3). Since then, landings have varied between 31 686 t and 54 041 t, highest in 2016. The annual landings since 2016 have decreased and were 39 616 t in 2021, 1072 t less than in 2020. The landings for the 2020/2021 fishing year were 18% higher than allocated quota of 34 379 t. The reasons for the implementation errors are related to the management system that allow for transfers of quota share between fishing years and conversion of TAC from one species to another.

Between 90–95% of the golden redfish catch in Division 5.a is taken by bottom trawlers targeting redfish (both fresh fish and factory trawlers; vessel length 48–65 m). The remaining catches are partly caught as bycatch in gillnet, long-line, and lobster fishery. In 2021, as in previous years, most of the catches were taken along the shelf southwest, west, and northwest of Iceland (Figure 11). Higher proportion of the catches is now taken along the shelf northwest of Iceland and less south and southwest.

In Division 5.b (Faroese waters), annual landings decreased from 9194 t in 1985 to less than 700 t in the 2006-2016 period (Table 3). In 2017, landings increased to 1397 t, the highest landings since 2005. The landings in 2021 decreased to 178 t ,1126 t less than in 2020 and similar as in 2016. Most of the golden redfish caught in Division 5.b is taken by pair and single trawlers (vessels larger than 1000 HP).

In Subarea 14 (East Greenland waters), the landings of golden redfish reached a record high of 30 962 t in 1982 but decreased drastically within the next three years to 2117 t in 1985 (Figure 10 and Table 3). During the period 1985–1994, the annual landings from Subarea 14 varied between 687 and 4255 t. There was little or no direct fishery for golden redfish from 1995 to 2009 and landings were 200 t or less, mainly taken as bycatch in the shrimp fishery. In 2010, landings of golden redfish increased considerable and were 1650 t, mainly due to increased *S. mentella* fishery in the area. Annual landings 2010–2015 have been between 1000 t and 2700 t but increased to 5442 t in 2016 which is the highest landings since 1983. The landings in 2021 were 3 532 t, 573 t less than in 2020.

Annual landings from Subarea 6 increased from 1978 to 1987 followed by a gradual decrease to 1992 (Table 3). From 1995 to 2004, annual landings have ranged between 400 and 800 t, but decreased to 137 t in 2005. Little or no landings of golden redfish were reported from Subarea 6 in 2006–2021 and were 100 t in 2021.

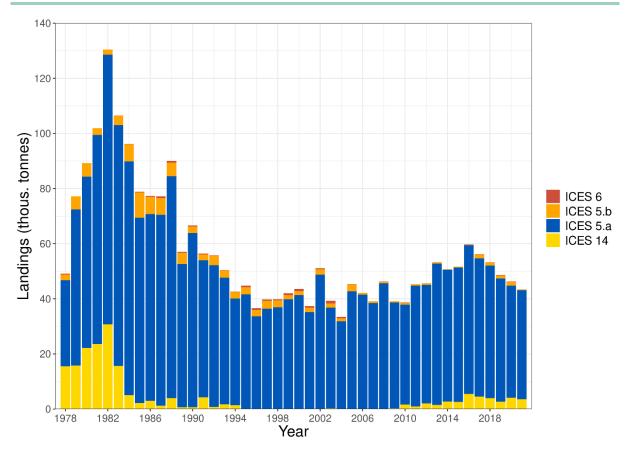



Figure 10. Nominal landings of golden redfish in tonnes by ICES Subareas and Divisions 1978–2021.

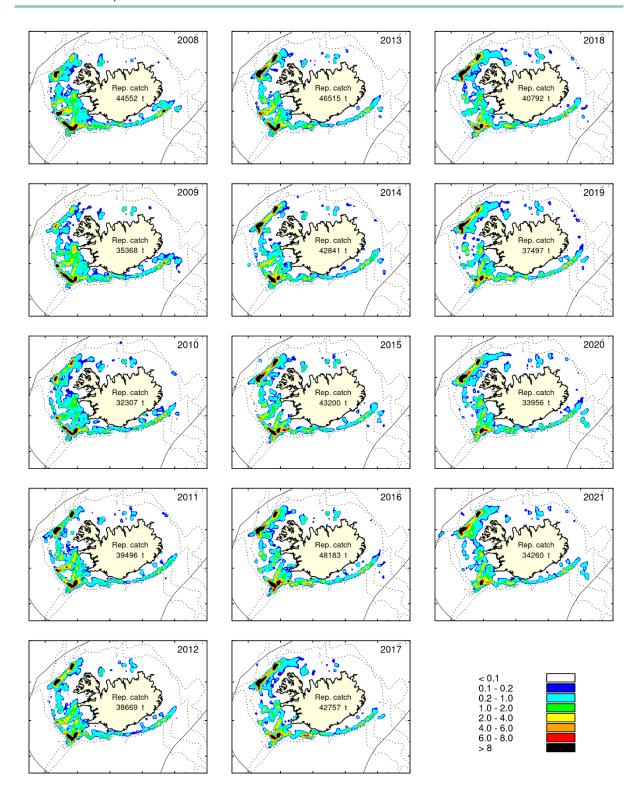



Figure 11. Geographical distribution of golden redfish bottom trawl catches in ICES Division 5.a 2006–2021.

#### **DISCARD**

Comparison of sea and port samples from the Icelandic discard sampling program does not indicate significant discarding due to high grading (Pálsson et al. 2010), possibly due to area closures of important nursery grounds west off Iceland. Substantial discard of small redfish took place in the deepwater shrimp fishery from 1986 to 1992, before sorting grids became mandatory. Since then, the discard has been insignificant both due to the sorting grid and much less abundance of small redfish in the region.

Discard of redfish species in the shrimp fishery in ICES Division 14.b is currently considered insignificant.

#### BIOLOGICAL DATA FROM THE COMMERCIAL FISHERY

The table below shows sampling from bottom trawl catches by ICES divisions in 2021. No sampling of the commercial catch from Subarea 6 was carried out.

Sampling from the bottom trawl catches in Icelandic waters (5.a) is considered sufficient and covers the spatial distribution of catches. The sampling coverage in 2021 is shown in Figure 12.

| Area | Nation        | Gear         | Landings (t) | Samples | No. length measured | No. Age read |
|------|---------------|--------------|--------------|---------|---------------------|--------------|
| 5.a  | Iceland       | Bottom trawl | 40 688       | 65      | 9 191               | 834          |
| 5.b  | Faroe Islands | Bottom trawl | 187          |         |                     |              |
| 14   | Greenland     | Bottom trawl | 3 532        |         |                     |              |

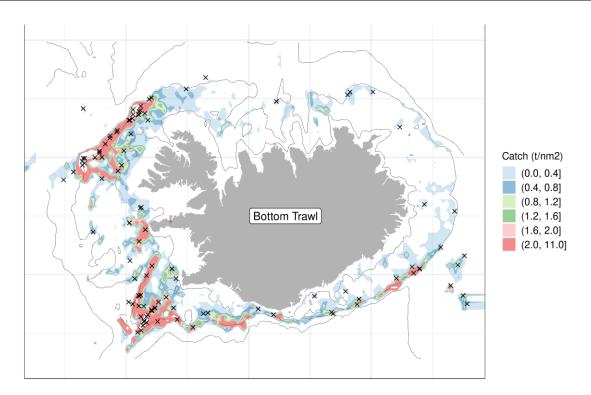



Figure 12. Demersal trawl fishing grounds in 2021 as reported in logbooks and positions of samples of golden redfish taken from landings (crosses).

#### LANDINGS BY LENGTH AND AGE

Length distributions from the Icelandic commercial trawler fleet in 1976–2021 show that most of the fish caught is 30-45 cm (Figure 13). The modes of the length distributions range between 35 and 40 cm and has over the past decade shifted to the right. The length distributions in 2012–2021 are narrower than previously, with less than average of small fish (<35 cm), and the mean length has increased by almost 5 cm.

Catch-at-age data from the Icelandic fishery in Division 5.a show that the 1985 cohort dominated the catches from 1995–2002 and the 1990 cohort dominated the catches in 2003-2007 (Figure 14 and Table 4). The 2004–2009 cohorts (ages 12–17) were the most dominant year classes in the fishery in 2021. There is a substantial decrease of 7–10-year-old fish in the catch, compared to recent previous years, an additional indicator of low recruitment in recent years, as observed in all surveys conducted in East Greenland and Icelandic waters.

The average total mortality (Z), estimated from the 25-year series of catch-at-age data (Figure 15) is about 0.20 for age 13 years and older.

Length distribution from the Faroese commercial catches 2001–2019 shows that the fish caught are on average larger than 40 cm with modes between 45 cm and 50 cm (Figure 16).

No length data from the catches have been available for several years from East Greenland waters (Subarea 14).

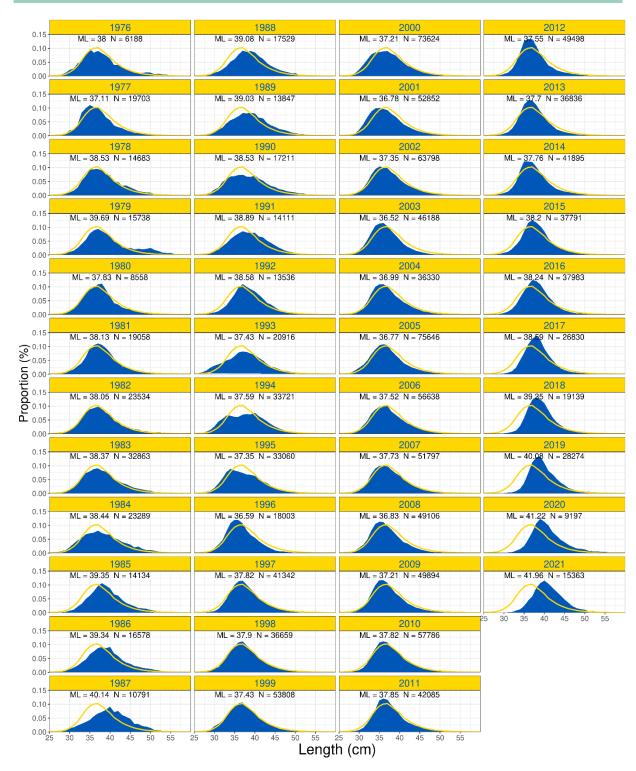



Figure 13. Length distribution (blue shaded area) of golden redfish in Icelandic waters (ICES Division 5.a) in the commercial landings of the Icelandic bottom trawl fleet 1976–2021. The yellow line is the mean of the years 1976–2021.

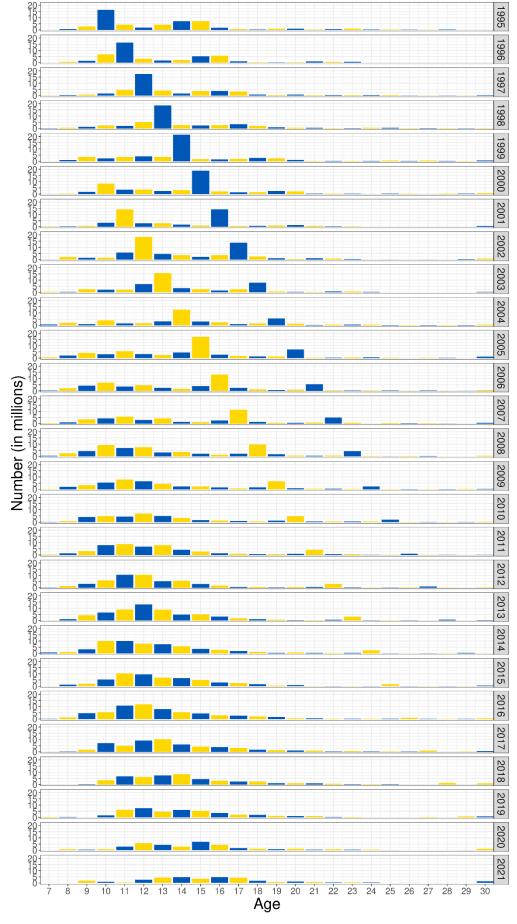



Figure 14. Catch-at-age of golden redfish in numbers in ICES Division 5.a 1995–2021. Bar size is indicative of the catch in numbers and bars are colored by cohort.




Figure 15. Catch curve of the 1981–2005 cohorts of golden redfish based on the catch-at-age data in ICES Division 5.a 1995–2021.

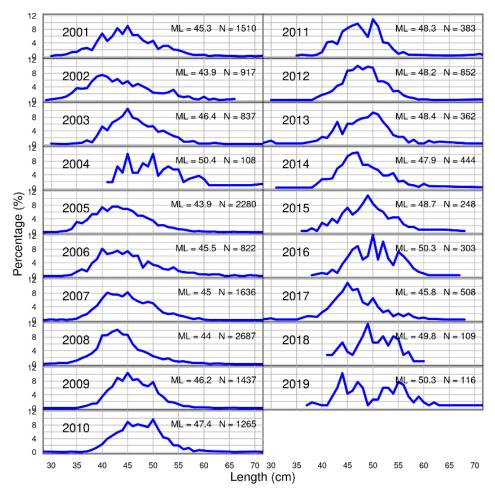



Figure 16. Length distribution of golden redfish from Faroese catches in ICES Division 5.b in 2001-2019.

## CATCH PER UNIT EFFORT

The un-standardized CPUE index from the Icelandic bottom trawl fleet operating in Division 5.a has increased sharply from 2006 to the highest level in the time series in 2017-2019 (Figure 17). CPUE has in since then decreased although it remains high. Effort towards golden redfish has since 1986 gradually decreased and is at the lowest level recorded (Figure 17). CPUE derived from logbooks is not considered indicative of stock trends, however the information contained in the logbooks on effort, spatial and temporal distribution of the fishery is of value.

CPUE from other areas are not available. This is because no separation of *S. norvegicus*/ *S. mentella* is made in the catches.



Figure 17. CPUE of golden redfish from Icelandic trawlers 1978–2021 where golden redfish catch composed at least 50% of the total catch in each haul (black line), 80% of the total catch (red line), and in all tows where golden redfish was caught (blue line).

## ANALYTICAL ASSESSMENT

The stock was benchmarked in January 2014 and a management plan evaluated and adopted (WKREDMP, ICES 2014). The benchmark group agreed to base the advice on the Gadget framework (see http://www.hafro.is/gadget for further details).

#### GADGET MODEL

#### DATA AND MODEL SETTINGS

Below is a brief description of the data used in the model and model settings is given.

Data used in the Gadget model are:

- Length disaggregated survey indices 19–54 cm in 2-cm length increments from the Icelandic groundfish survey in March 1985–2022 and the German survey in East Greenland 1984–2021. The German survey index in 2018 (survey not conducted) is based on the average of the 2017 and 2019 and the 2021 (survey not conducted) index is set as the same as in 2020.
- Survey indices are combined (Figure 18) and the German survey gets half the weight compared to what is presented in Figure 8. This was done to avoid extrapolation to areas not surveyed, and hence reduce noise. By using the stratification used to calculate indices, each station in the German survey would get 2.5 times more weight compared to the Icelandic survey.
- Length distributions from the Icelandic (1972-2022), Faroe Islands (1980-2020) and East Greenland (1975-2004) commercial catches.
- Landings by 6-month period from Iceland, Faroe Islands and East Greenland.
- Age-length keys and mean length at age from the Icelandic groundfish survey in October 1996– 2021.
- Age-length keys and mean length at age from the Icelandic commercial catch 1995–2021.

## Model settings:

- The simulation period is from 1970 to 2027 using data until the first half of 2022 for estimation. Two time-steps are used each year. The ages used were 5 to 30 years, where the oldest age is treated as a plus group (fish 30 years and older).
- Modelled length ranged between 19-54 cm.
- Commercial catches are split by country and implemented as separate fleets. Survey catch distribution data are modelled as a separate fleet.
- Recruitment was set at age 5.

## Estimated parameters are:

- Number of fishes when the simulation starts (8 parameters).
- Recruitment at age 5 each year (54 parameters).
- Length at recruitment (3 parameters).
- Parameters in the growth equation; (2 parameters).
- Parameter  $\beta$  of the beta-binomial distribution controlling the spread of the length distribution.
- Selection pattern of the three commercial fleets assuming logistic selection (S-shape) (3x2 parameters).
- Selection pattern of the survey fleet assuming an Andersen selection curve (bell-shape) (3 parameters).

It should be noted that the length disaggregated indices are from the spring survey, but the age data are from the autumn survey conducted six months later. The surveys could have different catchability,

but the age data are used as proportions within each 2 cm length group, so it should not have an impact on the results. Growth in between March and October is included in the model.

Assumptions done in the predictions:

- Recruitment at age 5 in 2023 and onwards was set as the average of the five smallest estimated year classes 1980–2007 or 39.5 million. The reason is indication of poor recruitment in recent years, but estimated recruitment was even lower.
- Catches in 2022 were set as the sum of expected landings, accounting for interannual transfer from 2021. Catches in 2022 were set as the sum of expected landings, accounting for interannual transfer from 2021.
- The estimated selection pattern from the Icelandic fleet was used for projections.

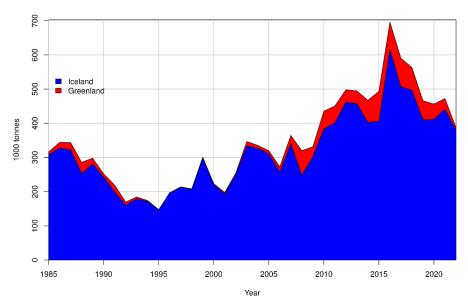



Figure 18. Biomass index from Iceland (blue) and Greenland (red), based on weighting the German survey data in Figure 6 by 0.5. The survey index in East Greenland for 2018 is the average of the 2017 and 2019 values because it was not conducted in 2018.

## RESULTS OF THE ASSESSMENT MODEL

Summary of the assessment is shown in Figure 19 and Table 5. The spawning stock increased 1995-2015 but has since then decreased and was om the beginning of 2022 estimated to be close to  $B_{trigger}$ . Fishing mortality has been low since 2010, but since the HCR was adopted in 2014, the fishing mortality has been above the target of 0.097 because the catches have exceeded the advice. Recruitment after 2013 is record low for the time series.

Assumptions about the year classes after the 2015 one will not have much effect on the advice this year. This is because the average proportion of fish 10-years old and younger in the landings are only about 10%. Later advice will be affected as well as the development of the spawning stock in short and medium term and is expected to decrease.

Although this year's assessment is consistent with previous assessments it shows a downward revision of SSB and an upward revision of fishing mortality compared to last year's assessment (Figure 20).



Figure 19. Golden redfish. Summary from the assessment 2021. The figure shows total catches, recruitment (age 5) spawning stock biomass (SSB) and fishing mortality for ages 9-19. The dashed line in the SSB plot represents  $B_{pa}$  and  $B_{lim}$ . The dashed line in the fishing mortality plot indicates the target fishing mortality.

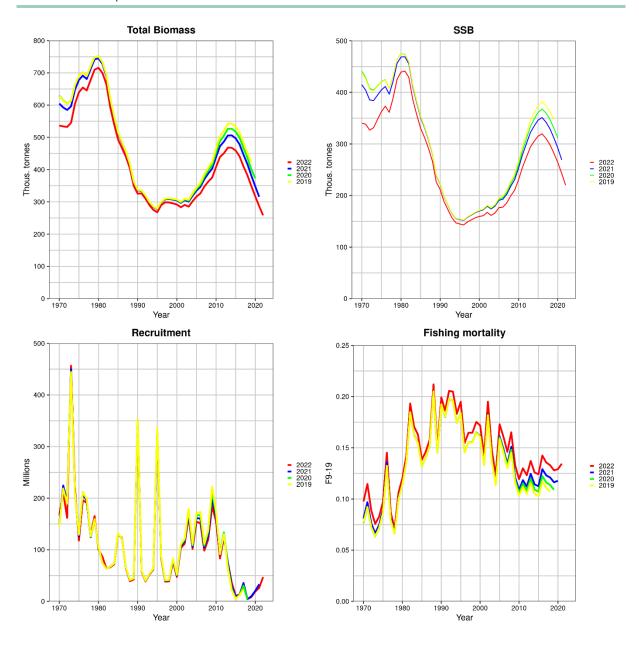



Figure 20. Golden redfish. Comparison of the current assessment (blue line) and the same assessment done in 2018 (red line) and 2019 (green line) for the spawning stock biomass (top), fishing mortality (middle) and recruitment (bottom).

## MOHN'S RHO

The evaluation retrospective pattern (five-year peel) of the assessment (Figure 21) is done by calculating the Mohn's rho values. The table below shows the Mohn's rho values for SSB, F and recruitment for five-and ten-year peels:

| Variable         | Value          |               |  |  |  |  |  |
|------------------|----------------|---------------|--|--|--|--|--|
|                  | Five-year peel | Ten-year peel |  |  |  |  |  |
| F <sub>bar</sub> | -0.0141        | -0.0442       |  |  |  |  |  |
| SSB              | 0.00589        | 0.0231        |  |  |  |  |  |
| Rec.             | 0.704          | 0.268         |  |  |  |  |  |

The Mohn's rho values for F<sub>bar</sub> and SSB are low (-1.4% and 0.6% respectively) but indicates that fishing mortality has consistently been underestimated and SSB been overestimated (Figure 21). Mohn's rho for recruitment is on the other hand high (70%) and indicates that recruitment has in previous assessments been overestimated. This value needs though to be taken with caution as recruitment estimates of the five-year peels is very low compared to previous years and any deviation from previous year may have relatively high impact. When extending the peel to 10 years the Mohn's rho value drops to 27%.

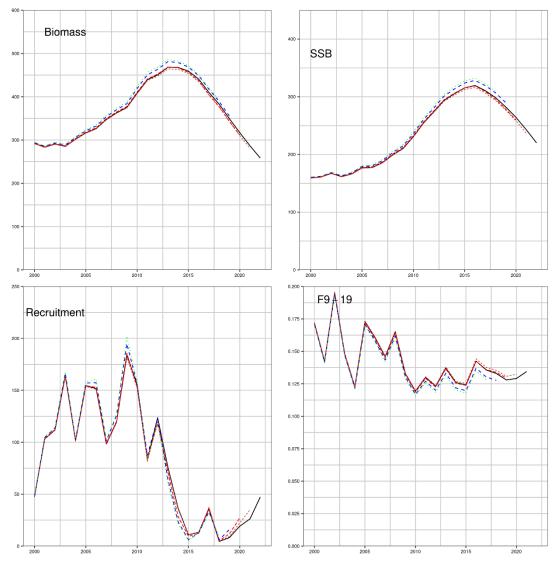



Figure 21. Golden redfish. Analytical retrospective pattern of the base run. Recruitment is at age 5 and F shows the development of ages 9–19.

#### **DIAGNOSTICS**

**Observed and predicted proportion by fleet:** Trends in different likelihood components (Figure 22) shows how the fit to survey length distributions has become worse in recent years. This can also be seen in Figure 23 where overall fit to the predicted proportional length distributions in the survey is smaller to the observed for medium sized fish (30-40 cm fish).

Length distributions from the Icelandic commercial catch does usually show good fit except in the most recent period when the large fish is missing and the length distribution narrower (Figure 24).

The fit between predicted and observed age distributions is better than for the length distributions (Figures 25 and 26). The model uses the data as age-length keys in 2 cm intervals for tuning.

**Model fit:** In Figure 27 the length disaggregated indices are plotted against the predicted numbers in the stock as a time-series. The lack of fit between observed and predicted numbers between 33 and 40 cm is caused by data conflicts with survey indices of larger sizes and compositional data. There appears to be an internal conflict between indices of lengths of 42 cm and above and the large number of smaller fish that was observed in the survey few years earlier. The model results are therefore a compromise between different data sets, and it is not able to follow the amount of 30–40 cm redfish in recent years. The inability of the model to fit the survey biomass in recent years has some support in the characteristics of the survey. Since 2003 most of the biomass in the Icelandic survey has been observed to be aggregated in very dense schools west of Iceland, caught on 5–10 stations every year. The size distribution in those schools is narrow and fish larger than 40 cm were rare.

As the model converges slowly, predicted indices could change several years back when more data are added. However, it is not the magnitude of the residuals but rather the temporal pattern that is worrying (Figure 28). For 35–42 cm fish, the observed indices have been above predictions for 5-11 years. The indices for 41–50 cm fish do not show such temporal pattern although in recent years the observed indices have been below prediction. The correlation between observed and predicted is good for 19-34 cm fish. When looking at the temporal patterns, longevity of the fish must be considered. Positive residuals in size groups 33–38 cm in recent years but negative for most other size groups, especially for fish smaller than 30 cm, indicates narrower length distributions in the survey than predicted (Figure 27).

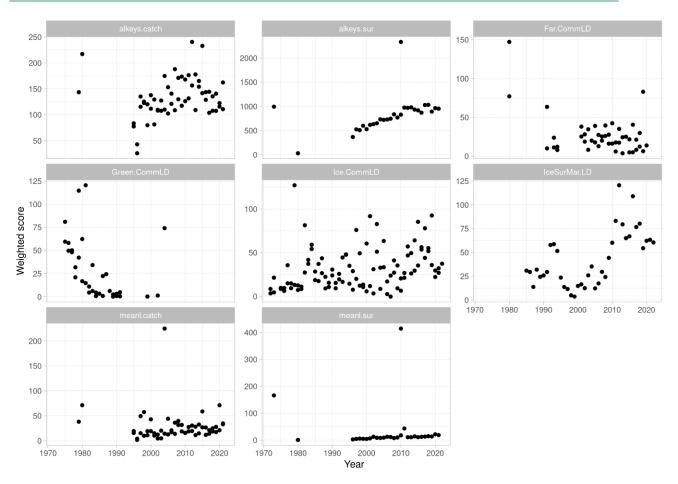



Figure 22. Golden redfish. Development of component of the objective function with time.

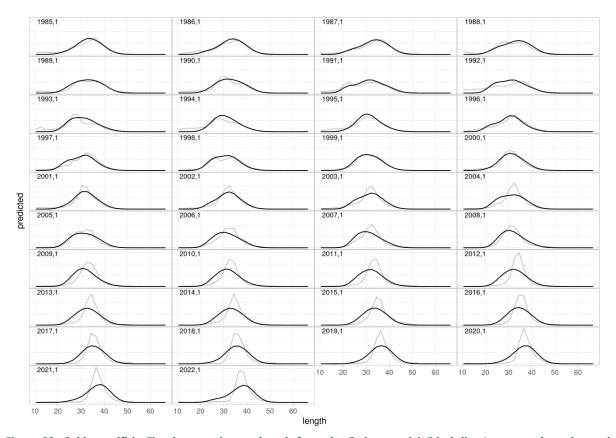



Figure 23. Golden redfish. Fitted proportions-at-length from the Gadget model (black lines) compared to observed proportions in the spring survey (grey lines).

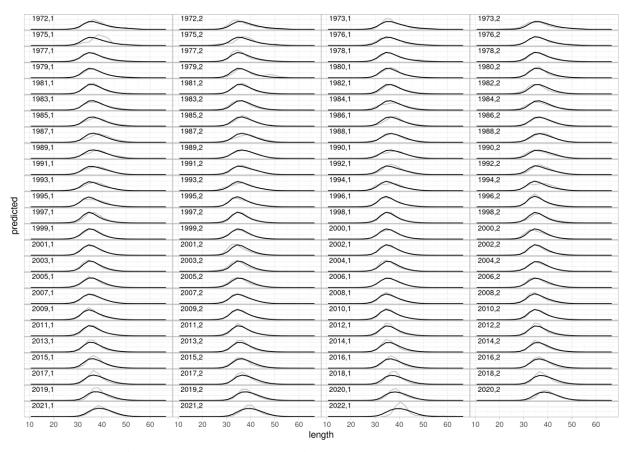



Figure 24. Golden redfish. Fitted proportions-at-length from the Gadget model (black lines) compared to observed proportions from the Icelandic commercial catches (grey lines).

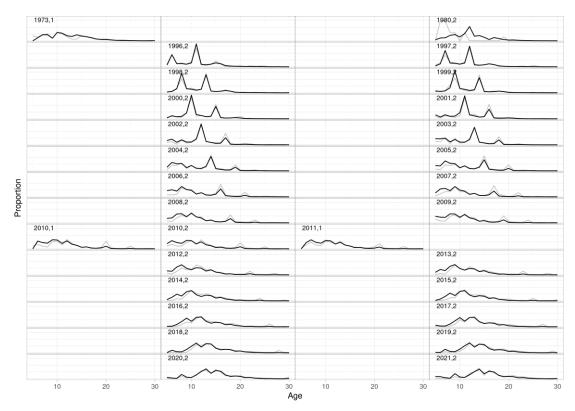



Figure 25. Golden redfish. Fitted proportions-at-age from the Gadget model (black lines) compared to observed proportions in bottom trawl surveys survey (grey lines).

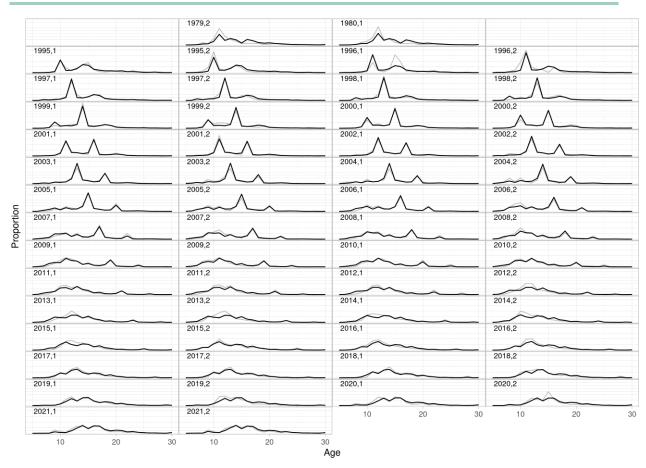



Figure 26. Golden redfish. Fitted proportions-at-age from the Gadget model (black lines) compared to observed proportions from the Icelandic commercial catches (grey lines).

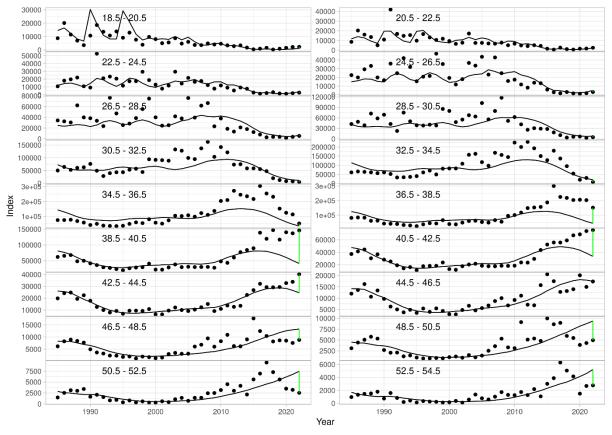



Figure 27. Golden redfish. Gadget fit to disaggregated abundance indices by length from the spring survey.

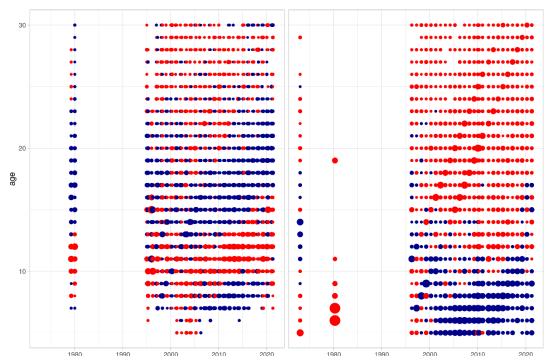



Figure 28. Golden redfish. Residuals from the fit between model and spring survey indices. The red circles indicate positive residuals (survey results exceed model prediction).

#### **ADVICE**

The management plan is based on  $F_{9-19} = 0.097$  reducing linearly if the spawning stock is estimated below 220 000 t ( $B_{trigger}$ ).  $B_{lim}$  was proposed as 160 000 t, lowest SSB in the 2012 run. The 2021 SSB was estimated at 260 090 t, and according to the management plan the TAC advice for 2022 was 31 855 t.

## REFERENCE POINTS

Harvest control rule (HCR) was evaluated at WKREDMP in January 2014 (ICES, 2014) based on stochastic simulations using the Gadget model. Considering conflicting information by different data continuing for many consequent years, the simulations were conducted using large assessment error with very high autocorrelation (CV = 0.25, rho = 0.9).

Yield-per-recruit analysis show that when average size at age 5 was allowed to change after year class 1996,  $F_{9-19,MAX}$  changed from 0.097 to 0.114. The proposed fishing mortality of 0.097 is therefore around 85% of FMAX with current settings. Stochastic simulations indicate that it leads to very low probability of spawning stock going below  $B_{trigger}$  and  $B_{lim}$ , even with relatively large auto-correlated assessment error.

At WKREDMP 2014,  $B_{lim}=B_{loss}=160~000$  t was defined as the lowest SSB in the 2012 Gadget run.  $B_{trigger}=B_{pa}$  was defined as 220000 t by adding a precautionary buffer to the proposed  $B_{lim}$  of 160000 t: 160\*exp(0.2\*1.645). Recruitment in the stochastic simulations was the average of year classes 1975–2003 but those year classes were the basis for the simulations at WKREDMP 2014.

The plot of the average spawning stock against fishing mortality shows that  $F_{lim} = 0.226$  and  $F_{pa}$  is then  $0.226/\exp(1.645*0.2) = 0.163$  (Figure 29). The spawning stock decreased considerably from early 1980s to mid-1990s or from 400000 t to 200000 t. The reduction in SSB was due to heavy fisheries but SSB increased again gradually because of improved recruitment and lower F.

The probability of current SSB <  $B_{trigger}$  is estimated 2.7%. For simplicity, the action of  $B_{trigger}$  is not included in the simulations since Gadget is not keeping track of "perceived spawning stock". Analysis of the stochastic prediction in R shows that if SSB is below  $B_{trigger}$  it will only be noted in <15% of the cases. The reason is that the spawning stock is only likely to go below  $B_{trigger}$  in periods of severe overestimation of the stock that occur due to the assumed high autocorrelation in assessment error. This situation differs from that of the stock going below  $B_{trigger}$  due to poor recruitment (worse than observed in recent decades). In this case the spawning stock should still have a resilient age structure (as discussed above) and this could reduce the need to take further action below  $B_{trigger}$ .

Figure 30 shows the development of  $F_{9-19}$  based on  $F_{9-19} = 0.097$ . F is expected to be within the range of the 5<sup>th</sup> and 95<sup>th</sup> quantile and the 16<sup>th</sup> and 84<sup>th</sup> quantile.

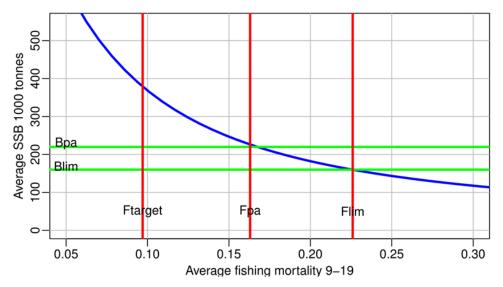



Figure 29. Golden redfish. Average SSB against average fishing mortality and defined reference points.

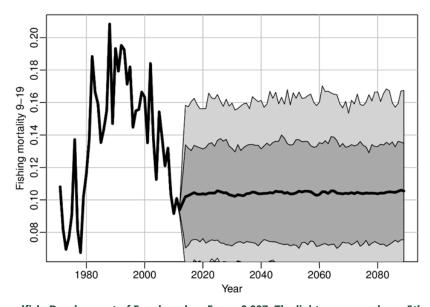



Figure 30. Golden redfish. Development of  $F_{9-19}$  based on  $F_{9-19} = 0.097$ . The light grey area shows 5th and 95th quantiles and the dark areas 16th and 84th quantiles.

## STATE OF THE STOCK

The results from Gadget indicate that fishing mortality has been low since 2009 but above  $F_{MSY}$  (Figure 16). Total biomass and SSB have been decreasing since 2016 (Table 5) and the absence of any indications of incoming cohorts raises concerns about the future productivity of the stock.

Results from surveys in Iceland and East Greenland indicate that most recent year classes are poor. The accuracy of the surveys as an indicator of recruitment is not known but recruitment is expected to be poor.

## SHORT TERM FORECAST

The Gadget model is length based where growth is modelled based on estimated parameters. The only parameters needed for short term forecast are assumptions about size of those cohorts that have not been seen in the surveys. These year classes were assumed to be the average of the five smallest year classes in 1980–2007.

The results from the short-term simulations based on  $_{F9-19}$  is shown in and from short term prognosis with varying fishing mortality in 2022 in Table 6. The results indicate that when fishing according to the management plan the SSB is expected to decrease further and to be below MSY  $B_{trigger}$  in 2023 (Table 6).

## MEDIUM TERM FORECAST

No medium-term forecast was carried out.

## UNCERTAINTIES IN ASSESSMENT AND FORECAST

Various factors regarding the uncertainty and modelling challenges are listed in the WKRED-2012 (ICES, 2012) and WKREDMP-2014 (ICES, 2014) reports.

## BASIS FOR ADVICE

Harvest control rule accepted at WKREDMP 2014 (ICES, 2014) and implemented by Icelandic and Greenland authorities in 2014.

## MANAGEMENT CONSIDERATION

In 2009 a fishery targeting redfish was initiated in Subarea 14 with annual catches of between 6000 and 8500 t in 2010–2019, highest in 2015 and lowest in 2018. The fishery does not distinguish between species, but based on survey information, golden redfish is estimated to be between 1000 and 2700 in 2010–2015 but increased to 3000–5400 t in 2016–2021.

Subarea 14 is an important nursery area for the entire resource. Measures to protect redfish juveniles in Subarea 14 should be continued (sorting grids in the shrimp fishery).

No formal agreement on the management of *S. norvegicus* exists among the three coastal states, Greenland, Iceland, and the Faroe Islands. However, an agreement was made between Iceland and Greenland in October 2015 on the management of the golden redfish fishery based on the management plan applied in 2014. The agreement was from 2016 to the end of 2018. The agreement states that each year 90% of the TAC is allocated to Iceland and 10% is allocated to Greenland. Furthermore, 350 t are allocated each year to other areas. The plan has not been renewed so no management plan is effective although Iceland and Greenland still follow this plan.

In Greenland and Iceland, the fishery is regulated by a TAC and in the Faroe Islands by effort limitation. The regulation schemes of those states have previously resulted in catches more than TACs advised by ICES.

Since 2009, surveys of redfish in the stock area have consistently shown very low abundance of young redfish (<30 cm). Biomass (SSB and the harvestable biomass) increased from 1995 to 2015 because of recruitment of several strong year classes to the stock. Since then, the biomass has declined. The absence of any indications of any incoming cohorts raises concerns about future productivity of the stock.

## **ECOSYSTEM CONSIDERATION**

Not evaluated for this stock.

## REGULATIONS AND THEIR EFFECTS

The separation of golden redfish and Icelandic slope *S. mentella* quota was implemented in the 2010/2011 fishing year.

In the late 1980s, Iceland introduced a sorting grid with a bar spacing of 22 mm in the shrimp fishery to reduce the bycatch of fish juveniles in the shrimp fishery north of Iceland. This was partly done to avoid redfish juveniles as a bycatch in the fishery, but also juveniles of other species. Since the large year classes of golden redfish disappeared out of the shrimp fishing area in the early 1990s, observers report small redfish as being negligible in the Icelandic shrimp fishery. Whether the sorting grids work where the abundance of redfish is high is not known, but not a relevant problem now in 5.b as abundance of small redfish is low and shrimp fisheries limited.

There is no minimum landing size of golden redfish in Division 5.a. However, if more than 20% of a catch observed on board is below 33 cm a small area can be closed temporarily. A large area west and southwest of Iceland is closed permanently for fishing to protect young golden redfish.

There is no regulation of the golden redfish in Division 5.b.

Since 2002 it has been mandatory in the shrimp fishery in Subarea 14 to use sorting grids to re-duce bycatches of juvenile redfish in the shrimp fishery.

## CHANGES IN FISHING TECHNOLOGY AND FISHING PATTERNS

There have been no changes in the fishing technology and the fishing pattern of golden redfish in ICES Subareas 5 and 14.

# BENCHMARK

Benchmark meeting for golden redfish is scheduled in 2023.

Golden redfish was last benchmarked in 2014 and the group thinks that benchmarking the stock is of high importance. The proposed benchmark meeting will explore several issues of current assessment model. These include poor fit to survey indices for fish between 30–40 cm; potential dome-shape in selectivity; uncertainty estimates are not available; investigate the appropriate-ness of the current growth and maturity model used in the assessment. In addition, the mee-ing will explore alternative assessment methods. Underutilized data sources from ICES 5.b and 14.b, mainly relevant sur- vey and commercial samples of age and length. Biological reference points will need to be redefined depending on the assessment method, especially in relation to the Fp0.5. Change in form of harvest control rule will also be explored, that is change the rule to proportion of biomass above certain size (i.e., 33 cm and bigger fish) from the F based rule that is used now.

# REFERENCES

ICES 2012. Report of the Benchmark Workshop on Redfish (WKRED 2012). ICES CM 2012/ACOM:48, 291 pp.

ICES 2014. Report of the Workshop on Redfish Management Plan Evaluation (WKREDMP). ICES CM 2014/ACOM:52, 269 pp.

Pálsson, Ó., Björnsson, H., Björnsson, E., Jóhannesson, G. and Ottesen P. 2010. Discards in demersal Icelandic fisheries 2009. Marine Research in Iceland 154.

## TABLES

Table 1. Survey indices and CV of golden redfish from the spring survey 1985–2021 and the autumn survey 1996–2020.

|      | SPRING SUF | RVEY  | AUTUMN SURVEY |       |  |  |
|------|------------|-------|---------------|-------|--|--|
| YEAR | BIOMASS    | cv    | BIOMASS       | cv    |  |  |
| 1985 | 307,926    | 0.095 |               |       |  |  |
| 1986 | 327,765    | 0.120 |               |       |  |  |
| 1987 | 322,121    | 0.122 |               |       |  |  |
| 1988 | 253,559    | 0.095 |               |       |  |  |
| 1989 | 281,117    | 0.122 |               |       |  |  |
| 1990 | 242,450    | 0.223 |               |       |  |  |
| 1991 | 199,128    | 0.114 |               |       |  |  |
| 1992 | 160,545    | 0.088 |               |       |  |  |
| 1993 | 179,275    | 0.130 |               |       |  |  |
| 1994 | 171,135    | 0.097 |               |       |  |  |
| 1995 | 146,102    | 0.102 |               |       |  |  |
| 1996 | 195,697    | 0.164 | 199,793       | 0.248 |  |  |
| 1997 | 212,558    | 0.216 | 120,628       | 0.279 |  |  |
| 1998 | 206,461    | 0.136 | 186,505       | 0.348 |  |  |
| 1999 | 297,090    | 0.143 | 262,691       | 0.310 |  |  |
| 2000 | 221,279    | 0.176 | 141,940       | 0.200 |  |  |
| 2001 | 192,724    | 0.176 | 177,456       | 0.155 |  |  |
| 2002 | 250,420    | 0.173 | 192,813       | 0.150 |  |  |
| 2003 | 333,901    | 0.161 | 199,450       | 0.159 |  |  |
| 2004 | 326,868    | 0.236 | 220,308       | 0.241 |  |  |
| 2005 | 310,635    | 0.129 | 229,013       | 0.240 |  |  |
| 2006 | 257,010    | 0.157 | 279,290       | 0.335 |  |  |
| 2007 | 339,778    | 0.224 | 219,951       | 0.252 |  |  |
| 2008 | 247,895    | 0.154 | 288,149       | 0.244 |  |  |
| 2009 | 302,204    | 0.253 | 294,028       | 0.282 |  |  |
| 2010 | 383,407    | 0.245 | 227,335       | 0.171 |  |  |
| 2011 | 401,358    | 0.235 | ·             |       |  |  |
| 2012 | 461,921    | 0.204 | 343,115       | 0.225 |  |  |
| 2013 | 457,451    | 0.177 | 317,325       | 0.156 |  |  |
| 2014 | 402,773    | 0.174 | 431,369       | 0.232 |  |  |
| 2015 | 406,150    | 0.281 | 360,722       | 0.173 |  |  |
| 2016 | 615,712    | 0.313 | 401,135       | 0.279 |  |  |
| 2017 | 507,058    | 0.205 | 428,351       | 0.187 |  |  |
| 2018 | 497,092    | 0.210 | 342,467       | 0.195 |  |  |
| 2019 | 410,550    | 0.158 | 383,532       | 0.233 |  |  |
| 2020 | 411,320    | 0.206 | 244,099       | 0.159 |  |  |
| 2021 | 441,154    | 0.194 | 269,053       | 0.199 |  |  |
| 2022 | 378,907    | 0.177 |               |       |  |  |

MFRI Assessment Reports 2022 Golden redfish

Table 2. Golden redfish in 5.a. Age disaggregated indices (in millions) from the autumn groundfish survey 1996–2020. The survey was not conducted in 2011.

| YEAR/AGE | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011 | 2012  | 2013  | 2014  |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|
| 1        | 0.3   | 1.0   | 3.6   | 3.3   | 0.8   | 0.4   | 0.1   | 0.0   | 0.0   | 0.1   | 0.2   | 0.1   | 0.0   | 0.1   | 0.0   | 2011 | 0.0   | 0.0   | 0.0   |
| 2        | 2.4   | 0.2   | 1.5   | 3.3   | 1.7   | 1.0   | 0.1   | 0.5   | 0.0   | 0.1   | 0.2   | 1.2   | 0.0   | 0.1   | 0.0   |      | 0.0   | 0.0   | 0.0   |
| 3        | 0.7   | 2.2   | 0.9   | 3.3   | 1.4   | 1.9   | 1.5   | 1.1   | 1.0   | 0.1   | 0.7   | 1.2   | 2.5   | 0.3   | 1.7   |      | 0.1   | 0.0   | 0.3   |
| 4        | 1.6   | 1.6   | 2.3   | 1.5   | 1.6   | 2.4   | 6.1   | 1.1   | 1.8   | 1.0   | 0.7   | 1.1   | 2.7   | 4.4   | 0.3   |      | 1.4   | 0.0   | 0.3   |
| 5        | 8.3   | 2.2   | 0.9   | 4.7   | 1.0   | 5.4   | 5.8   | 12.3  | 3.3   | 4.2   | 5.0   | 2.1   | 4.1   | 12.0  | 4.3   |      | 4.1   | 1.0   | 0.1   |
| 6        | 40.0  | 6.9   | 3.5   | 2.8   | 7.9   | 2.1   | 11.8  | 17.7  | 28.6  | 4.8   | 6.8   | 10.4  | 7.9   | 11.6  | 14.2  |      | 3.1   | 4.1   | 1.8   |
| 7        | 11.3  | 22.5  | 16.6  | 10.5  | 6.7   | 10.8  | 3.3   | 38.2  | 36.7  | 39.7  | 15.6  | 26.0  | 39.2  | 13.9  | 15.1  |      | 23.5  | 3.0   | 12.8  |
| 8        | 19.1  | 14.3  | 58.2  | 47.2  | 6.4   | 10.9  | 26.9  | 9.9   | 65.4  | 44.9  | 81.9  | 35.8  | 75.1  | 73.9  | 23.4  |      | 70.3  | 41.8  | 24.6  |
| 9        | 15.1  | 13.0  | 22.4  | 99.9  | 26.2  | 7.1   | 11.2  | 48.5  | 21.0  | 62.7  | 81.5  | 76.6  | 67.9  | 96.4  | 54.4  |      | 60.6  | 84.8  | 96.9  |
| 10       | 28.9  | 11.1  | 26.1  | 43.7  | 95.0  | 17.3  | 16.6  | 12.7  | 45.6  | 24.9  | 85.7  | 37.4  | 106.4 | 58.7  | 69.0  |      | 62.9  | 56.3  | 151.8 |
| 11       | 102.7 | 17.6  | 18.9  | 20.7  | 11.5  | 111.2 | 32.0  | 17.0  | 19.3  | 44.2  | 26.3  | 36.1  | 63.2  | 100.9 | 32.5  |      | 103.8 | 41.3  | 90.8  |
| 12       | 16.2  | 67.8  | 19.1  | 16.8  | 14.2  | 23.6  | 116.3 | 39.7  | 13.4  | 19.6  | 37.5  | 19.0  | 55.1  | 45.9  | 57.4  |      | 74.2  | 68.6  | 69.7  |
| 13       | 10.1  | 6.2   | 104.5 | 20.8  | 7.9   | 23.6  | 20.0  | 111.3 | 26.6  | 15.4  | 18.0  | 23.8  | 13.5  | 42.9  | 28.6  |      | 43.3  | 47.5  | 67.5  |
| 14       | 16.8  | 5.3   | 10.1  | 147.1 | 8.0   | 7.9   | 11.5  | 12.4  | 103.9 | 26.8  | 15.1  | 8.2   | 18.2  | 10.2  | 19.6  |      | 39.1  | 26.5  | 50.4  |
| 15       | 33.9  | 7.2   | 7.6   | 6.0   | 51.4  | 9.2   | 9.8   | 10.8  | 13.6  | 82.1  | 18.3  | 6.8   | 9.1   | 18.3  | 9.1   |      | 19.6  | 31.7  | 27.0  |
| 16       | 16.1  | 10.0  | 7.8   | 9.6   | 5.3   | 58.9  | 10.4  | 6.1   | 9.6   | 9.5   | 75.4  | 16.9  | 7.8   | 6.9   | 10.9  |      | 16.7  | 18.7  | 26.6  |
| 17       | 1.9   | 6.9   | 14.1  | 10.9  | 2.5   | 4.3   | 45.4  | 7.5   | 6.0   | 6.7   | 8.7   | 49.4  | 13.1  | 6.4   | 4.7   |      | 6.1   | 12.8  | 17.1  |
| 18       | 1.7   | 3.9   | 7.6   | 11.1  | 2.5   | 5.0   | 4.6   | 32.7  | 6.1   | 3.7   | 4.3   | 10.4  | 36.6  | 7.4   | 3.1   |      | 5.9   | 7.2   | 12.3  |
| 19       | 4.3   | 2.0   | 0.5   | 8.4   | 4.6   | 3.6   | 3.0   | 4.5   | 21.6  | 5.0   | 2.8   | 4.5   | 6.2   | 28.4  | 6.6   |      | 3.9   | 5.2   | 6.0   |
| 20       | 6.6   | 1.4   | 3.2   | 3.9   | 6.5   | 4.1   | 3.2   | 1.6   | 3.1   | 22.0  | 3.1   | 1.5   | 5.7   | 4.7   | 22.2  |      | 3.9   | 4.5   | 5.9   |
| 21       | 1.1   | 0.8   | 2.3   | 2.8   | 1.0   | 3.7   | 3.9   | 1.1   | 1.8   | 2.5   | 17.8  | 4.0   | 2.1   | 2.1   | 3.1   |      | 3.5   | 4.8   | 4.8   |
| 22       | 5.0   | 1.5   | 0.8   | 1.0   | 1.6   | 2.3   | 3.2   | 2.7   | 1.7   | 2.1   | 2.0   | 13.8  | 2.3   | 1.3   | 1.2   |      | 18.3  | 2.4   | 3.6   |
| 23       | 3.9   | 2.4   | 2.2   | 2.1   | 0.4   | 0.3   | 0.8   | 1.1   | 2.5   | 2.4   | 1.7   | 1.3   | 11.0  | 2.0   | 1.6   |      | 2.9   | 18.2  | 3.4   |
| 24       | 4.6   | 0.8   | 0.4   | 0.6   | 1.0   | 0.5   | 0.4   | 0.3   | 0.0   | 0.9   | 1.0   | 1.3   | 1.4   | 10.2  | 0.7   |      | 2.0   | 2.6   | 12.7  |
| 25       | 3.9   | 2.7   | 1.4   | 2.8   | 0.8   | 0.3   | 0.5   | 0.3   | 1.2   | 1.2   | 1.7   | 0.2   | 0.8   | 0.8   | 5.7   |      | 1.2   | 1.2   | 1.5   |
| 26       | 0.9   | 1.1   | 0.2   | 1.2   | 0.7   | 0.5   | 0.6   | 0.2   | 0.4   | 0.3   | 0.9   | 0.6   | 0.9   | 1.0   | 0.6   |      | 1.7   | 1.1   | 0.9   |
| 27       | 0.9   | 0.2   | 0.9   | 2.9   | 0.5   | 0.8   | 0.3   | 0.3   | 0.0   | 0.1   | 0.9   | 0.3   | 1.2   | 1.3   | 0.4   |      | 7.5   | 0.8   | 0.9   |
| 28       | 0.8   | 0.4   | 0.5   | 1.5   | 0.7   | 0.5   | 0.2   | 0.0   | 0.2   | 0.2   | 0.2   | 0.0   | 0.6   | 0.2   | 0.7   |      | 0.4   | 8.7   | 0.5   |
| 29       | 0.1   | 0.0   | 0.5   | 1.2   | 0.5   | 0.2   | 0.7   | 0.1   | 0.2   | 0.0   | 0.4   | 0.4   | 0.8   | 1.6   | 0.4   |      | 0.4   | 0.5   | 3.3   |
| 30+      | 0.8   | 1.4   | 3.0   | 1.1   | 1.3   | 2.3   | 1.7   | 1.5   | 1.6   | 2.1   | 1.0   | 0.9   | 1.5   | 1.7   | 2.0   |      | 2.1   | 3.5   | 2.6   |
| TOTAL    | 360.0 | 214.6 | 341.6 | 492.7 | 271.8 | 322.1 | 352.7 | 393.2 | 436.4 | 429.4 | 515.6 | 391.3 | 557.2 | 565.9 | 393.5 |      | 582.5 | 499.2 | 696.9 |

MFRI Assessment Reports 2022 Golden redfish

Table 4. Golden redfish in 5.a. Continued.

| 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  |  |
|-------|-------|-------|-------|-------|-------|-------|--|
| 0.0   | 0.0   | 0.0   | 0.1   | 0     | 0.4   | 0.3   |  |
| 0.1   | 0.0   | 0.3   | 0.2   | 0.1   | 0.2   | 0.2   |  |
| 0.6   | 0.0   | 0.3   | 0.4   | 0.4   | 1.0   | 0.2   |  |
| 0.3   | 1.8   | 0.2   | 0.1   | 0.8   | 0.7   | 0.6   |  |
| 0.1   | 0.3   | 1.6   | 0.2   | 1.5   | 1.3   | 1.3   |  |
| 1.2   | 0.8   | 1.3   | 3.0   | 0.9   | 0.8   | 2.5   |  |
| 7.6   | 3.9   | 1.6   | 2.5   | 15.3  | 0.7   | 1.3   |  |
| 28.3  | 29.1  | 10.4  | 2.0   | 7.8   | 10.9  | 1.6   |  |
| 33.1  | 63.8  | 38.1  | 5.9   | 7.4   | 3.9   | 12.4  |  |
| 86.4  | 48.1  | 93.8  | 36.7  | 20.3  | 7.4   | 7.0   |  |
| 100.7 | 87.5  | 56.9  | 72.1  | 46.8  | 18.4  | 9.0   |  |
| 52.9  | 97.2  | 95.7  | 58.4  | 91.5  | 41.0  | 30.4  |  |
| 47.6  | 54.3  | 87.8  | 65.7  | 58.7  | 39.1  | 35.9  |  |
| 41.7  | 45.3  | 41.9  | 54.9  | 62.7  | 24.3  | 48.7  |  |
| 40.3  | 35.8  | 27.4  | 27.3  | 45.4  | 39.0  | 14.9  |  |
| 21.1  | 31.9  | 28.8  | 20.2  | 36.1  | 25.7  | 36.4  |  |
| 20.0  | 20.3  | 35.6  | 21.9  | 18.7  | 10.5  | 23.2  |  |
| 10.0  | 22.1  | 17.8  | 21.1  | 21.7  | 12.1  | 13.1  |  |
| 10.0  | 16.1  | 14.7  | 12.9  | 22.1  | 12.0  | 10.3  |  |
| 9.9   | 8.9   | 16.8  | 11.3  | 13.7  | 11.1  | 10.8  |  |
| 3.3   | 3.0   | 11.5  | 6.0   | 14.7  | 6.9   | 12.4  |  |
| 2.5   | 3.9   | 4.8   | 10.3  | 12.3  | 4.6   | 9.2   |  |
| 2.1   | 3.7   | 6.1   | 6.9   | 7.2   | 4.1   | 8.4   |  |
| 1.1   | 2.8   | 4.8   | 2.8   | 3.7   | 3.3   | 5.6   |  |
| 13.1  | 3.4   | 2.9   | 2.6   | 1.3   | 2.5   | 4.4   |  |
| 1.5   | 15.0  | 2.6   | 2.9   | 2.0   | 1.8   | 2.7   |  |
| 1.4   | 1.0   | 13.9  | 2.6   | 1.3   | 1.9   | 1.5   |  |
| 1.6   | 1.0   | 1.7   | 11.5  | 1.7   | 0.8   | 0.8   |  |
| 1.0   | 0.9   | 1.8   | 1.5   | 10.4  | 1.3   | 2.7   |  |
| 6.9   | 6.7   | 7.9   | 7.5   | 5.3   | 9.6   | 14.8  |  |
| 546.3 | 608.9 | 629.0 | 472.0 | 531.8 | 297.4 | 322.6 |  |

Table 3. Official landings (in tonnes) of golden redfish, by area, 1978–2020 as officially reported to ICES.

| AREA   |          |          |        |         |         |  |  |
|--------|----------|----------|--------|---------|---------|--|--|
| YEAR   | ICES 5.A | ICES 5.B | ICES 6 | ICES 14 | TOTAI   |  |  |
| 1978   | 31 300   | 2 039    | 313    | 15 477  | 49 129  |  |  |
| 1979   | 56 616   | 4 805    | 6      | 15 787  | 77 214  |  |  |
| 1980   | 62 052   | 4 920    | 2      | 22 203  | 89 177  |  |  |
| 1981   | 75 828   | 2 538    | 3      | 23 608  | 101 977 |  |  |
| 1982   | 97 899   | 1 810    | 28     | 30 692  | 130 429 |  |  |
| 1983   | 87 412   | 3 394    | 60     | 15 636  | 106 502 |  |  |
| 1984   | 84 766   | 6 228    | 86     | 5 040   | 96 120  |  |  |
| 1985   | 67 312   | 9 194    | 245    | 2 117   | 78 868  |  |  |
| 1986   | 67 772   | 6 300    | 288    | 2 988   | 77 348  |  |  |
| 1987   | 69 212   | 6 143    | 576    | 1 196   | 77 127  |  |  |
| 1988   | 80 472   | 5 020    | 533    | 3 964   | 89 989  |  |  |
| 1989   | 51 852   | 4 140    | 373    | 685     | 57 050  |  |  |
| 1990   | 63 156   | 2 407    | 382    | 687     | 66 632  |  |  |
| 1991   | 49 677   | 2 140    | 292    | 4 255   | 56 364  |  |  |
| 1992   | 51 464   | 3 460    | 40     | 746     | 55 710  |  |  |
| 1993   | 45 890   | 2 621    | 101    | 1 738   | 50 350  |  |  |
| 1994   | 38 669   | 2 274    | 129    | 1 443   | 42 515  |  |  |
| 1995   | 41 516   | 2 581    | 606    | 62      | 44 765  |  |  |
| 1996   | 33 558   | 2 316    | 664    | 59      | 36 597  |  |  |
| 1997   | 36 342   | 2 839    | 542    | 37      | 39 761  |  |  |
| 1998   | 36 771   | 2 565    | 379    | 109     | 39 825  |  |  |
| 1999   | 39 824   | 1 436    | 773    | 7       | 42 040  |  |  |
| 2000   | 41 187   | 1 498    | 776    | 89      | 43 550  |  |  |
| 2001   | 35 067   | 1 631    | 535    | 93      | 37 326  |  |  |
| 2002   | 48 570   | 1 941    | 392    | 189     | 51 092  |  |  |
| 2003   | 36 577   | 1 459    | 968    | 215     | 39 220  |  |  |
| 2004   | 31 686   | 1 139    | 519    | 107     | 33 453  |  |  |
| 2005   | 42 593   | 2 484    | 137    | 115     | 45 329  |  |  |
| 2006   | 41 521   | 656      | 0      | 34      | 42 211  |  |  |
| 2007   | 38 364   | 689      | 0      | 83      | 39 134  |  |  |
| 2008   | 45 538   | 569      | 64     | 80      | 46 253  |  |  |
| 2009   | 38 442   | 462      | 50     | 224     | 39 177  |  |  |
| 2010   | 36 155   | 620      | 220    | 1 653   | 38 648  |  |  |
| 2011   | 43 773   | 493      | 83     | 1 005   | 45 354  |  |  |
| 2012   | 43 089   | 491      | 41     | 2 017   | 45 63!  |  |  |
| 2013   | 51 330   | 372      | 92     | 1 499   | 53 263  |  |  |
| 2014   | 47 769   | 201      | 60     | 2 706   | 50 736  |  |  |
| 2015   | 48 769   | 270      | 44     | 2 562   | 51 645  |  |  |
| 2016   | 54 041   | 165      | 50     | 5 442   | 59 698  |  |  |
| 2017   | 50 119   | 1 418    | 93     | 4 501   | 56 14:  |  |  |
| 2018   | 48 014   | 1 129    | 80     | 4 004   | 53 227  |  |  |
| 2019   | 44 746   | 1 119    | 101    | 2 665   | 48 530  |  |  |
| 2020   | 40 688   | 1 304    | 100    | 4 105   | 46 197  |  |  |
| 20211) | 39 616   | 178      | 100    | 3 532   | 43 426  |  |  |

1) Provisional

MFRI Assessment Reports 2022 Golden redfish

Table 4. Golden redfish in 5.a. Observed catch in weight (tonnes) by age and years in 1995–2021.

| YEAR/AGE | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 7        | 46     |        | 33     |        |        |        |        |        |        |        | 227    |        |        | 215    |        |        |        |        | 30     |        |
|          |        | 0      |        | 24     | 6      | 38     | 125    | 127    | 191    | 226    |        | 176    | 135    |        | 103    | 60     | 138    | 68     |        | 235    |
| 8        | 321    | 389    | 226    | 280    | 342    | 62     | 143    | 884    | 201    | 855    | 755    | 987    | 446    | 1,057  | 936    | 359    | 558    | 612    | 555    | 475    |
| 9        | 1,432  | 867    | 481    | 586    | 1,592  | 825    | 402    | 736    | 1,312  | 501    | 1,877  | 2,134  | 1,727  | 2,164  | 1,689  | 2,218  | 1,626  | 1,603  | 2,197  | 1,752  |
| 10       | 8,598  | 3,887  | 1,039  | 1,193  | 1,252  | 4,180  | 1,653  | 808    | 1,080  | 2,107  | 1,496  | 3,605  | 2,442  | 5,006  | 3,059  | 2,725  | 4,772  | 3,444  | 3,886  | 6,176  |
| 11       | 2,570  | 9,575  | 2,708  | 1,118  | 1,843  | 1,843  | 7,768  | 3,192  | 1,160  | 828    | 3,093  | 2,017  | 3,319  | 3,997  | 4,964  | 2,786  | 5,699  | 6,725  | 5,952  | 6,751  |
| 12       | 1,286  | 2,170  | 11,609 | 3,221  | 2,521  | 2,224  | 1,810  | 10,955 | 3,863  | 989    | 1,899  | 2,789  | 1,911  | 4,682  | 4,457  | 4,921  | 4,899  | 7,345  | 9,488  | 5,807  |
| 13       | 3,616  | 1,354  | 2,828  | 12,425 | 2,447  | 1,665  | 1,930  | 3,012  | 9,576  | 2,017  | 1,366  | 1,624  | 3,068  | 2,297  | 3,430  | 3,895  | 6,235  | 4,021  | 6,896  | 5,809  |
| 14       | 5,787  | 1,523  | 1,366  | 2,068  | 15,536 | 2,329  | 1,243  | 2,548  | 2,304  | 8,612  | 3,021  | 1,275  | 1,050  | 2,819  | 1,848  | 2,740  | 3,772  | 4,721  | 4,032  | 4,776  |
| 15       | 6,229  | 4,293  | 3,106  | 2,020  | 1,242  | 14,598 | 826    | 1,805  | 1,932  | 2,148  | 11,840 | 2,818  | 955    | 1,546  | 2,008  | 1,378  | 2,501  | 2,668  | 4,466  | 3,061  |
| 16       | 1,833  | 5,033  | 3,579  | 2,394  | 1,250  | 1,752  | 11,487 | 2,998  | 1,202  | 1,656  | 2,073  | 10,318 | 2,168  | 1,067  | 1,247  | 1,201  | 1,309  | 1,525  | 3,043  | 2,538  |
| 17       | 912    | 954    | 2,968  | 3,404  | 1,795  | 1,170  | 515    | 11,726 | 2,231  | 870    | 1,447  | 2,074  | 9,337  | 1,804  | 681    | 820    | 981    | 820    | 1,720  | 1,921  |
| 18       | 395    | 372    | 869    | 2,029  | 2,619  | 1,602  | 769    | 2,054  | 6,494  | 1,381  | 1,243  | 1,191  | 1,329  | 8,188  | 1,502  | 648    | 602    | 813    | 1,205  | 1,245  |
| 19       | 1,244  | 252    | 616    | 1,013  | 2,194  | 2,400  | 1,025  | 1,150  | 784    | 5,065  | 1,241  | 722    | 741    | 1,503  | 6,158  | 1,086  | 691    | 492    | 764    | 464    |
| 20       | 1,232  | 343    | 919    | 723    | 1,237  | 2,141  | 1,684  | 622    | 390    | 1,093  | 6,387  | 956    | 717    | 966    | 970    | 4,980  | 987    | 808    | 488    | 1,202  |
| 21       | 549    | 1,059  | 440    | 528    | 452    | 538    | 916    | 1,360  | 585    | 342    | 387    | 5,524  | 876    | 567    | 654    | 901    | 5,052  | 627    | 510    | 438    |
| 22       | 674    | 698    | 534    | 397    | 211    | 438    | 386    | 982    | 840    | 464    | 456    | 552    | 4,765  | 831    | 576    | 762    | 1,056  | 3,512  | 772    | 425    |
| 23       | 1,521  | 790    | 641    | 426    | 326    | 283    | 399    | 697    | 788    | 599    | 758    | 226    | 732    | 4,231  | 342    | 519    | 753    | 477    | 3,298  | 486    |
| 24       | 695    | 0      | 567    | 660    | 215    | 63     | 155    | 352    | 426    | 528    | 591    | 396    | 113    | 382    | 2,561  | 665    | 204    | 324    | 183    | 2,929  |
| 25       | 777    | 0      | 703    | 536    | 810    | 408    | 119    | 270    | 307    | 239    | 417    | 457    | 599    | 254    | 98     | 2,151  | 134    | 225    | 199    | 183    |
| 26       | 396    | 0      | 263    | 382    | 264    | 361    | 109    | 176    | 71     | 94     | 94     | 97     | 329    | 433    | 97     | 199    | 1,336  | 237    | 171    | 195    |
| 27       | 372    | 0      | 135    | 432    | 592    | 220    | 265    | 80     | 74     | 187    | 253    | 254    | 345    | 337    | 199    | 348    | 77     | 1,326  | 108    | 142    |
| 28       | 799    | 0      | 186    | 358    | 227    | 520    | 182    | 287    | 26     | 123    | 161    | 200    | 199    | 169    | 94     | 131    | 201    | 198    | 918    | 57     |
| 29       | 0      | 0      | 137    | 54     | 105    | 379    | 142    | 469    | 95     | 127    | 28     | 168    | 36     | 171    | 359    | 155    | 44     | 72     | 37     | 674    |
| 30+      | 230    | 0      | 388    | 501    | 745    | 1,152  | 1,015  | 1,280  | 643    | 636    | 1,484  | 962    | 1,024  | 851    | 411    | 507    | 145    | 426    | 414    | 33     |
| TOTAL    | 41,515 | 33,558 | 36,339 | 36,771 | 39,823 | 41,188 | 35,066 | 48,569 | 36,576 | 31,688 | 42,591 | 41,520 | 38,364 | 45,537 | 38,443 | 36,156 | 43,773 | 43,088 | 51,328 | 47,768 |

MFRI Assessment Reports 2022 Golden redfish

Table 4. Golden redfish in 5.a. Continued.

| YEAR/AGE | 2015   | 2016   | 2017   | 2019   | 2010   | 2020   | 2021   |
|----------|--------|--------|--------|--------|--------|--------|--------|
| •        | 2015   |        |        | 2018   | 2019   |        | -      |
| 7        | 14     | 49     | 0      | 0      | 214    | 0      | 41     |
| 8        | 563    | 751    | 104    | 51     | 144    | 507    | 26     |
| 9        | 902    | 2,717  | 949    | 212    | 64     | 288    | 1,276  |
| 10       | 3,154  | 3,713  | 4,503  | 2,279  | 1,227  | 575    | 766    |
| 11       | 7,118  | 8,111  | 3,523  | 4,890  | 4,678  | 2,185  | 373    |
| 12       | 7,104  | 9,393  | 7,077  | 4,812  | 6,176  | 4,928  | 2,440  |
| 13       | 5,553  | 6,688  | 8,748  | 6,507  | 4,028  | 4,154  | 4,056  |
| 14       | 5,673  | 4,705  | 5,370  | 7,779  | 5,710  | 3,148  | 4,743  |
| 15       | 4,774  | 4,024  | 3,790  | 4,278  | 5,127  | 8,115  | 3,794  |
| 16       | 3,015  | 2,629  | 3,576  | 3,243  | 4,006  | 5,032  | 5,350  |
| 17       | 2,651  | 2,729  | 3,012  | 2,748  | 2,607  | 2,253  | 4,801  |
| 18       | 1,861  | 2,013  | 1,866  | 2,614  | 2,301  | 1,545  | 2,310  |
| 19       | 780    | 1,724  | 1,412  | 1,282  | 1,376  | 1,329  | 1,167  |
| 20       | 1,192  | 663    | 1,187  | 1,347  | 1,512  | 1,564  | 1,646  |
| 21       | 288    | 536    | 990    | 1,211  | 1,147  | 788    | 1,261  |
| 22       | 275    | 350    | 438    | 629    | 508    | 970    | 768    |
| 23       | 196    | 223    | 489    | 496    | 518    | 522    | 942    |
| 24       | 424    | 241    | 313    | 277    | 161    | 600    | 799    |
| 25       | 1,816  | 304    | 324    | 336    | 56     | 82     | 152    |
| 26       | 243    | 1,335  | 148    | 167    | 184    | 45     | 443    |
| 27       | 214    | 176    | 1,265  | 35     | 350    | 62     | 28     |
| 28       | 189    | 29     | 87     | 1,663  | 103    | 122    | 186    |
| 29       | 87     | 25     | 192    | 26     | 1,161  | 162    | 214    |
| 30+      | 682    | 907    | 756    | 1,133  | 1,387  | 1,713  | 2,030  |
| TOTAL    | 48,770 | 54,043 | 50,117 | 48,015 | 44,745 | 40,689 | 39,616 |

Table 5. Golden redfish. Results from the Gadget model of total biomass, spawning stock biomass, recruitment at age 5 (in millions), catch and fishing mortality, projections are in italic. All weights are in tonnes.

| (    |         |         | - 4 1   |         |       |
|------|---------|---------|---------|---------|-------|
| YEAR | BIOMASS | SSB     | R(AGE5) | CATCHES | F9-19 |
| 1971 | 534,085 | 338,242 | 210.6   | 67,880  | 0.115 |
| 1972 | 532,312 | 326,889 | 161.7   | 50,890  | 0.089 |
| 1973 | 545,411 | 331,438 | 456.7   | 43,719  | 0.076 |
| 1974 | 604,345 | 347,290 | 220.5   | 50,598  | 0.083 |
| 1975 | 639,480 | 362,455 | 117.9   | 61,920  | 0.097 |
| 1976 | 654,476 | 373,340 | 195.9   | 94,420  | 0.145 |
| 1977 | 645,558 | 361,350 | 191.0   | 53,753  | 0.087 |
| 1978 | 678,240 | 389,424 | 129.6   | 48,736  | 0.071 |
| 1979 | 709,833 | 425,542 | 165.5   | 77,212  | 0.106 |
| 1980 | 715,593 | 439,297 | 100.2   | 89,143  | 0.120 |
| 1981 | 699,854 | 441,430 | 86.9    | 101,966 | 0.142 |
| 1982 | 665,192 | 429,215 | 64.2    | 130,322 | 0.193 |
| 1983 | 593,378 | 386,355 | 66.1    | 106,050 | 0.171 |
| 1984 | 540,066 | 357,097 | 71.8    | 95,288  | 0.163 |
| 1985 | 493,226 | 330,502 | 129.5   | 78,531  | 0.138 |
| 1986 | 466,558 | 312,661 | 123.3   | 76,908  | 0.146 |
| 1987 | 439,463 | 291,881 | 63.4    | 76,559  | 0.158 |
| 1988 | 404,205 | 266,908 | 39.1    | 89,804  | 0.212 |
| 1989 | 349,457 | 226,159 | 42.5    | 56,645  | 0.150 |
| 1990 | 325,284 | 211,258 | 347.6   | 66,314  | 0.199 |
| 1991 | 326,320 | 187,851 | 57.5    | 56,015  | 0.186 |
| 1992 | 309,854 | 172,180 | 38.6    | 55,826  | 0.206 |
| 1993 | 289,910 | 156,762 | 52.1    | 50,179  | 0.205 |
| 1994 | 275,205 | 147,027 | 61.7    | 42,520  | 0.183 |
| 1995 | 267,797 | 144,733 | 325.4   | 44,263  | 0.195 |
| 1996 | 289,841 | 143,002 | 83.5    | 35,595  | 0.155 |
| 1997 | 298,610 | 149,041 | 38.5    | 38,996  | 0.165 |
| 1998 | 298,230 | 152,952 | 38.8    | 39,694  | 0.165 |
| 1999 | 295,290 | 157,102 | 76.5    | 42,463  | 0.175 |
| 2000 | 291,814 | 159,403 | 47.5    | 42,607  | 0.172 |
| 2001 | 283,408 | 160,947 | 103.2   | 36,744  | 0.142 |
| 2002 | 290,677 | 167,273 | 111.8   | 50,730  | 0.195 |
| 2003 | 285,287 | 161,447 | 163.6   | 38,219  | 0.148 |
| 2004 | 301,906 | 166,336 | 101.6   | 32,766  | 0.123 |
| 2005 | 316,429 | 176,691 | 154.3   | 46,619  | 0.173 |
| 2006 | 326,245 | 177,413 | 151.7   | 42,108  | 0.173 |
| 2007 | 347,359 | 185,875 | 98.4    | 39,154  | 0.146 |
| 2008 | 362,743 | 199,321 | 119.8   | 46,195  | 0.165 |
| 2009 | 375,258 | 210,288 | 184.1   | 39,301  | 0.133 |
| 2010 | 408,289 | 230,741 | 155.3   | 38,504  | 0.119 |
| 2011 | 439,377 | 254,843 | 83.2    | 45,146  | 0.119 |
| 2012 | 459,577 |         | 123.6   |         | 0.133 |
|      |         | 274,185 |         | 45,423  |       |
| 2013 | 468,061 | 293,834 | 76.1    | 53,223  | 0.137 |
| 2014 | 467,648 | 305,377 | 36.3    | 50,697  | 0.126 |
| 2015 | 459,245 | 315,360 | 11.0    | 51,621  | 0.124 |
| 2016 | 440,842 | 319,575 | 13.3    | 59,711  | 0.142 |
| 2017 | 409,897 | 310,673 | 35.9    | 56,355  | 0.136 |
| 2018 | 382,627 | 298,542 | 4.5     | 53,167  | 0.133 |
| 2019 | 349,029 | 282,338 | 8.2     | 48,550  | 0.128 |
| 2020 | 317,118 | 264,207 | 19.1    | 46,116  | 0.129 |
| 2021 | 286,687 | 242,926 | 26.2    | 43,337  | 0.134 |
| 2022 | 258,329 | 220,056 | 47.2    |         |       |

Table 6. Golden redfish. Output from short term prognosis. Multiplier is based on reference to the adopted HCR  $F_{9-}$  19 = 0.097. All weights are in tonnes.

| Biomass (2022) | SSB (2022) | F9-19<br>(2022) | Landings (2022) | Biomass (2023) | SSB (2023) |
|----------------|------------|-----------------|-----------------|----------------|------------|
| 258 329        | 220 056    | 0.128           | 37 241          | 238 910        | 200 045    |

| Basis                               | Total catch (2023) | F9-19 (2023) | Biomass 5+ (2024) | SSB (2024) |
|-------------------------------------|--------------------|--------------|-------------------|------------|
| Management plan                     | 25 545             | 0.097        | 229 871           | 189 588    |
| Other catch options                 |                    |              |                   |            |
| F <sub>0</sub>                      | 0                  | 0            | 255 771           | 213 812    |
| F <sub>sq</sub> = F2 <sub>021</sub> | 31 152             | 0.134        | 224 183           | 184 271    |